
                  JCBPS; Section B; August 2015–October 2015, Vol. 5, No. 4; 4106-4118.         E- ISSN: 2249 –1929   

Journal of Chemical, Biological and Physical Sciences 

An International Peer Review E-3 Journal of Sciences 

Available online atwww.jcbsc.org 

Section B: Biological Sciences 

 

CODEN (USA): JCBPAT                                                                                                                                              Research Article  

4106 J. Chem. Bio. Phy. Sci. Sec. B, August  2015 – October 2015; Vol.5, No.4; 4106-4118. 

 

Network Inference for Gene Regulation during 

Flowering Intitiation in Arabidopsis Thaliana using 

Time-Series Data 

Pui Shan Wong and Sachiyo Aburatani* 

Biotechnology Research Institute for Drug Discovery, National Institute of AIST, Tokyo, Japan 

Received: 26 August 2015; Revised: 17 September 2015; Accepted: 25 September 2015 

Abstract: Time-series gene expression is very useful for tracking changes in expression 

during environmental changes or experimental conditions. As the majority of gene 

interactions has a many-to-many relationship with each other, a network can be used to 

model and analyse such data. We create and use a method that maps, gene interactions onto 

a network using their time-series expression data. The model relies on coding the 

differences in gene expression through the time into numerical patterns. The patterns form 

the vertices of the network and are linked together by edges that are decided by comparing 

two patterns. The edge weights are calculated using the expression of two connected 

patterns and represents the degree of expression difference between the two connected 

patterns. We apply our method to transcription factors in apical meristem time-series data 

from Arabidopsis thaliana and show that the inferred network identifies and clusters 

transcription factors involved in floral transition. The network consists of 17 subnetworks 

of varying sizes with the largest containing 36 vertices. The subnetworks are distinguished 

by gene ontology enrichment terms. We identify the pivotal time period of transition from 

vegetative growth to flowering to 12 and 13 hours after germination by examining the 

expression patterns. 
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INTRODUCTION 

Genome sequencing and expression experiments are rapidly advancing the field of biology as they become 

more efficient and accessible. The data produced by these technologies give us great insight into the 

genomics and metabolomics of living systems. It shows that genes function within multiple systems that 

include many complex interactions. The intricate processes that take place between genotype and phenotype 

plays a large role in organism traits. 

In order to keep up with the advance in data gathering methods, data analysis techniques also need to be 

developed. One of the key steps during data analysis lies within developing or choosing the correct data 

analysis techniques to derive information and meaning from raw data. Next-generation sequencing is 

acknowledged for generating a wealth of data that tends to be deep and complex, requiring different types 

of analyses, models and tools such as DESeq21 and EBSeq2, as well as higher interpretation tools such as 

gene set enrichment analysis (GSEA)3. 

A network is a type of model that is useful for analysing interactions within a cell. As networks are analysis 

as well as visualization tools, they are helpful for examining systems where one action affects many 

components. These types of interactions happen frequently in a cell during a response to stimuli, such as 

metabolites, or environmental queues, such as light. The main elements involved in gene expression 

regulation are called transcription factors. They are proteins that activate or suppress the gene transcription 

activity, typically by binding to a transcription factor binding site close to a gene. When a transcription 

factor is activated, it can affect the expression of other genes in a many–to-many relationship. This type of 

relationship is important in situations such as the introduction of drug compounds. 

We propose an analysis method using gene expression patterns to construct a network that models the 

interaction of transcription factors within a cellular system. By converting expression values into discrete 

units, called expression patterns, our method is able to infer a transcription factor network on temporal 

RNA-Seq data and extract information about interactions occurring within the organism. It is an extension 

of the phylogenetic profile clustering method used for assigning protein functions4, altered so that it can 

work on expression data to produce a visual summary of the relationships between expression patterns. We 

apply our method to apical meristem growth expression data from Arabidopsis thaliana to model the 

expression of transcription factors associated with floral transition5. 

The transition from vegetative development to flowering is controlled by transcription factors responding 

to genetic and environmental stimuli such as hormones and light6. Several major transcription factors were 

outlined with the A. thaliana data5. Some of them positively regulate transitioning and flowering like 

SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1)7,8 and FLOWERING LOCUS D (FD)9,10. Some 

of them negatively regulate flowering like FLOWERING LOCUS C (FC)11 and SHORT VEGETATIVE 

PHASE (SVP)12. Other transcription factors initiate different stages during the transitioning period such as 

initiating flowering or controlling floral organ identity. These include LEAFY (LFY)13,14, CAULIFLOWER 

(CAL)15,16, PISTILLATA (PI)17, AGAMOUS and various SQUAMOSA PROMOTER BINDING 

PROTEIN-LIKE family (SPL)18-21 that go on to regulate APETALA1 (AP1)22,23. 

We use the constructed network to show that the floral transition transcription factors are clustered together 

and use them to confirm the identification of additional transcription factors that affect or are affected by 

known regulators. 
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Additionally, we use the direction and weight of the network edges to quantify the relationships between 

groups of transcription factors to highlight important regulation events at each time. Lastly, we broadly 

describe the processes being regulated in our network by using an enrichment analysis on the transcription 

factors incorporated in our network. 

METHOD 

Expression Pattern Creation: The purpose of the expression patterns is to convey the change in expression 

in time for each gene. As the A. thaliana data, we used5 was already normalized at each time, the difference 

in expression between adjacent time points could be calculated directly. The transition from vegetative 

phase to flowering initiation started from M4 so the differences in expression were calculated between M4 

to M10. The time intervals were M4-M5, M5-M6, M6-M7, M7-M8, M8-M9, M9-M10. If an experiment 

used a control and treatment group, it is also possible to use fold change data instead of difference in 

expression. 

The expression values in each time interval were binned into -1, 0 and 1 values, where -1 indicates a 

decreasing  in expression, 0 indicates no change in expression and 1 indicates an increase in expression. To 

compensate for the variation in expression values, a threshold was used to determine whether a non-zero 

expression was large enough to be considered -1 or 1. As most genes do not exhibit varied gene expression 

when compared to genes of interest, we can use their gene expression as a guide for no change in expression. 

For each gene, we calculated the standard deviation in gene expression across all time intervals. We then 

took the median of all the standard deviations and used the positive and negative value of that as the 

threshold boundary for the 0 bin. Our threshold was 90.29 meaning gene expressions between -90.29 and 

90.29 were put into the 0 bin and gene expressions were binned into 1 or -1 if they were above or below 

90.29 and -90.29 respectively. 

A vector was assembled for each gene to create expression patterns using the binned values. The elements 

of each vector are ordered in chronological order to the time intervals starting with M4-M5 in the first 

position. 

Identifying Transcription Factors: The transcription factors were found using the Plant Transcription 

Factor Database24 for A. thaliana. 

Network Construction 

Graph Structure: A network was constructed by using the expression patterns as nodes. Edges in the 

network were added to signify a relationship between the two patterns while the edge weights quantified 

the relationship. 

A pair of expression patterns, nodes u and v, are denoted as ~u and ~v and are made up of values ui and vi 

at each position i within each pattern. All ui and vi have possible values of -1, 0 and 1. When ~u contains at 

least two different values, the first position where ui is different from u1 is named a. As u1 =6 ua, it stands to 

reason that a 6= 1. For example, in (0, 0, 1, 0, 0, 0), u[1] = 0 and u[a] = 1 so a = 3. An edge connecting ~u to 

~v is made if there is only one ui and vi that is not equal to each other. The position where this difference is 

located is named b. For example, in ~u = (1,0,0,1,0,0) and ~v = (1,0,0,0,0,0) the difference is at u4 and v4, 

so therefore b = 4. 
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Edge Properties: The edge direction was decided by considering the expression of transcription factors at 

early time points affecting the expression of transcription factors at later time points. We developed the 

following algorithm to decide whether an edge started from u and ended at v. 

Step 1: Remove the edge from u to v if either of the vectors are made up of only one value. These are 

the patterns consisting of only 0s or only 1s or only -1s and so is unrelated to time. 

Step 2: Compare ~u[1:a] and ~v[1:a]. If they are the same, then the edge direction from u to v is false because 

it means that the difference in expression pattern is after a. If they are different, continue to step 3. 

Step 3: For u and v where a = b, check if v1 = 0 and va = 0. If v1 = 0 and va = 0, then the edge direction 

from u to v is true as the pattern in u[1:a] contains 1 or -1 while v[1:a] is 0. If they are both not equal to 0, then 

the edge direction is false. 

Step 4: For patterns where a is different from b, check if ub 6= 0 and vb = 0. If ub 6= 0 and vb = 0, then 

the edge direction from u to v is true as the expression pattern 1 or -1 happens in u before v. If ub = 0 and vb 

6= 0 , then the edge direction is false. 

After establishing edge directions, the edge weights were calculated using Equation 1. The weights are a 

measure of the expression between genes at nodes u and v, particularly at position ua and va. As there are 

usually many genes per expression patterns, the median was chosen to represent the average expression 

value. 

                 (1) 

where W(u,v) is the weight of the edge from node u to v, d is the time at which the expression pattern differs 

between u and v, and Mu(Fd(x)) is the median expression of genes with pattern u at time d. Similarly, 

Mv(Fd(x)) is the median expression of genes with pattern v at time d. The following Mu(F∀t(x)) and 

Mv(F∀t(x)) is the median of expression at all-time points of genes with pattern u and v respectively. In the 

case that a median is 0, a small number is added to all medians such as 1x10−10. 

Undirected edges and unconnected nodes were removed from the full network, leaving a subnetwork or 

several subnetworks of connected nodes and directed edges. 

Network Visualization: The graphs were created and drawn in R using the igraph package25,26. 

Enrichment Analysis: The gene list of each subnetwork was used in an enrichment analysis at The Plant 

GSEA27. The gene sets used were the three Gene Ontology (GO) components (biological process, cellular 

component and molecular function) with the species set to A. thaliana. 

The list of gene ontologies were then summarised using REViGO28 to collapse redundant terms. This was 

done using the small setting with the FDR corrected p-values from the enrichment analysis. We used the A. 

thaliana GO term database with the SimRel semantic similarity measure. 

Expression Data Source: The A. thaliana expression data is publicly available in the NCBI Sequence Read 

Archive [project ID PRJNA268115]5. 

RESULTS 

Gene Expression Patterns: Gene expression patterns were created for 1,402 A. thaliana transcription 

factors. There were 242 unique patterns of length six where each element in the vector represented the 
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difference in expression between two adjacent time points. The time intervals were M4-M5, M5-M6, M6-

M7, M7-M8, M8-M9 and M9-M10. Each time point was one day apart starting from 10 days after 

germination at M4 to 16 days after germination at M10. The values of each vector element indicated if gene 

expression was up-regulated (1), down-regulated (-1) or unchanged (0). With six sample points and three 

possible values, there are 729 possible expression patterns. However, we only observed 242 patterns in our 

data. The top three most common patterns were (0, 0, 0, 0, 0, 0) seen in 40% of the transcription factors, (-

1, 1, 0, 0, 0, 0) seen in 2.3% of transcription factors and (-1, 0, 0, 0, 0, 0) seen in 2.1% of the transcription 

factors. In contrast, there were 111 patterns seen in one gene each and 51 patterns represented by two genes 

each. The patterns with ten or more genes had on average 3.6 0s, 2 1s and 2.1 -1s while the patterns with 

one or two genes had on average 2.1 0 s, 1.9 1s and 1.8 -1 s. 

The floral transition transcription factors were represented by 15 unique patterns. The prevalence of each 

value in the patterns reveals that the most important time interval for these transcription factors is M6-M7. 

This time interval had eight patterns with a 1 value at this time, followed by six patterns with a 0 value and 

only one pattern with -1. When compared to the counts for the other time periods, it has the highest 

frequency of a value and the lowest (1 and -1 respectively). The other time intervals had a mixture of 7, 6 

and 2 or 6, 5 and 4 frequencies for each value. 

 

 

Fig. 1: A step-by-step flow chart showing the application of the edge direction algorithm with examples. 

The blue boxes show a step in the algorithm and the orange boxes show an example of a node pair 

following the algorithm. 

Transcription Factor Network: The transcription factor expression patterns were used to create a network 

model of the relationships between expression patterns. As discrete units, the expression patterns were used 

as vertices to construct the initial undirected network (Fig. 2). The network was connected by joining 

expression patterns that differed by only one value, e.g. (1, 1, 0, 0, 0, 0) and (0, 1, 0, 0, 0, 0). This created 

a network made up of 242 vertices connected by 680 edges. The most connected vertex was (1, -1, 0, 1, -1, 
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0) and had a degree of 12. There were eight vertices with a degree of 1 and one unconnected vertex, (-1, -

1, 1, 1, 0, 1). 

 

 

Fig. 2: The network during construction in the first two stages. A. The vertices are joined together to 

create an undirected network. The vertices are in light blue and are connected by gray edges. B. The edge 

directions are established and highlighted in dark blue. Vertices with at least one directed edge are in 

yellow. The final graph includes the yellow vertices and dark blue edges only. 

 

Once the edges were established, the directions and weights were added to the undirected network (Fig. 2). 

The direction was determined by the temporal effect of gene regulation, while the weights were ratios 

signifying the impact of gene expression at the time where the expression patterns differed. Connected 

patterns whose edges could not be directed were removed for clarity. This produced 17 separate 

subnetworks that contained 136 vertices and 123 edges within them (Fig. 3). There were 6 subnetworks 

that were made up of only two vertices and an edge, while the largest subnetwork was made up of 36 

vertices and 36 edges. 

Due to the way the edge directions were determined, most subnetworks contained a central sink vertex 

where all the connecting edges were incoming edges. The sink vertex patterns usually contained many 0 

values such as (0, 0, 0, 0, 0, 1) and were represented by many transcription factors compared to the leaf 

vertices. While the smaller subnetworks with five or less vertices were mainly linear, the large subnetworks 

were mainly star-like with fairy separate branches joined to a central spine. A rectangular structure was 

visible in three of the large subnetworks consisting of four vertices and four edges. 
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Fig 3: The final network with undirected edges removed from Fig. 2 B. There are 17 unconnected 

subnetworks labelled 1-17 of varying sizes. In descending order, they are 3 (36 vertices), 1 (31 vertices), 

12 (12 vertices), 4 (10 vertices), 2 (9 vertices), 7 (6 vertices), 5 (5 vertices), 13 (5 vertices), 6 (4 vertices), 

16 (3 vertices), 17 (3 vertices), 8 (2 vertices), 9 (2 vertices), 10 (2 vertices), 11 (2 vertices), 14 (2 vertices) 

and 15 (2 vertices). The floral transition transcription factors are in subnetworks 1, 4, and 7. 

Most of the edge weights were quite small with a median of 1.76 and a mean of -1.40. There were eight 

large weights with values over 100 and these were found in the two largest subnetworks. There were two 

paths of large edge weights with three vertices where the largest weights were between the last two vertex 

of each path. These were (1, -1, 0, 0, 1, 1) → (0, -1, 0, 0, 1, 1) → (0, 0, 0, 0, 1, 1) and (-1, 1, 0, 0, 1, 1) → 

(0, 1, 0, 0, 1, 1) → (0, 0, 0, 0, 1, 1). The second path indicates that a regulation step at M5-M6 is related to 

transcription factor activity at later time points and that the relation is stronger at M4-M5 than at M5-M6. 

There were 17 floral transition transcription factors and nine of them were found in three of the 

subnetworks, 1, 4 and 7. Subgraph 1 was the largest among them and contained seven transcription factors 

(Fig. 4). The pathway begins with SPL4 and LFY in patterns (1, -1, 1, 1, 1, 1) and (-1, 0, 1, 1, 1, 1), and 

then flows on to AP1, AP3, PI and SPL3, with patterns (0, 0, 0, 1, 1, 1), (0, 0, 0, 0, 1, 1) and (0, 0, 0, 0, 0, 

1). Of the two initial transcription factors, the edge from LFY had a larger edge weight than SPL4. The 

other transcription factors identified in the subnetworks were CAL in subnetwork 4 and FLC in subnetwork 

7. The remaining unconnected transcription factors were SVP, CO1, FD, SPL9, SPL5, SPL15, MYB3R1 

and MYB3R4. 
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Fig. 4: The weights and vertex patterns of subnetwork 1. The weights are written in black next to the 

applicable edge and the patterns are written in dark blue next to the applicable vertex. This major 

subnetwork contains 9 of the 17 floral transition transcription factors. Their expression patterns are 

highlighted by yellow vertices. 

 

Enrichment Analysis: The genes of the subnetworks were put through a GO enrichment analysis. The four 

largest subnetworks had 199, 170, 119 and 74 enriched terms respectively. They shared 54 common terms 

which made up a 73% majority for the fourth largest subnetwork. The enrichment analysis was successful 

for all subnetworks except for subnetwork 14 which did not contain enough annotated genes. 

The resulting lists of enriched gene ontologies were summarised so that they could be compared. Many of 

the summaries included general terms such as biological regulation or metabolic processes, however, there 

were several unique and indispensable ontologies that were observed. Subgraph 1 was defined by 

transcription factors annotated with rhythmic process, circadian rhythm, response to light stimulus, protein 

acetylation, and regulation of multicellular organismal process, reproduction and reproductive structure 

development. Subgraph 2 was a lot smaller and was summarised the two terms, long-chain fatty acid 

metabolic process and defence response to insects. Subgraph 3 was the largest graph and was distinguished 

by the terms, immune system process, response to endogenous stimulus, glucuronoxylan metabolic process, 

bract development, reproductive process, positive regulation of biological process and multi-organism 

process. Subgraph 4 contained a moderate number of genes, but was only defined by DNA-templated 

regulation of transcription and response to gibberellin.  

Subgraph 5 was smaller and was represented by nitrogen compound metabolic process and positive 

regulation of biological process. Subgraph 6 was roughly the same size as subnetwork 5 and was described 

by the response to salicyclic acid, respiratory burst and positive regulation of biological process. Subgraph 

7 was summarised by the more specific terms, nitrogen compound metabolic process, chloroplast relocation 

and negative regulation of flower development. Subgraph 8 had only two vertices and its summarising 
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terms were DNA-templated regulation of transcription, response to gibberellin and embryo development 

ending in seed dormancy. Similarly subnetwork 9 was the same size and had several unique terms in its 

summary of response to auxin, multicellular organismal process, developmental process, DNA-templated 

positive regulation of transcription and gynoecium development.  

 
 
 

 
 
 

Fig. 5: A simplified view of the subnetworks when connected by the minimum number of undirected 

edges. Each subnetwork vertex and edge connection is merged into one vertex, keeping the edges that lie 

along the shortest path between subnetworks. The subnetworks are colored as they were in Fig. 3. Joining 

vertices that were not part of a subnetwork are marked in light blue and labelled with the expression 

pattern. 

Subgraph 10 and 11 were also two vertex graphs where subnetwork 10 was described by reproduction, 

response to abscisic acid, seed germination, peptidyl-histidine modification and reproductive process while 

subnetwork 11 was described by general transcription factor terms like nucleic acid binding, sequence 

specific DNA binding transcription factor activity and transcription regulator activity. Subgraph 12 was a 

more moderately sized graph distinguished by the term immune effector process, post embryonic 

morphogenesis, RNA metabolic process and multicellular organismal process. Subgraph 13 is only defined 

by two terms, regulation of metabolic process and cotyledon morphogenesis. Subgraphs 15, 16 and 17 are 

very small structures where subnetwork 15 is involved in demethylation, subnetwork 16 in transcription 

regulator activity and subnetwork 17 in cellular response to glucose stimulus. 

DISCUSSION 

Gene expression is a chronologically dependent process where a change in expression in gene A at one time 

point is related to the change in expression in gene B at a later time point. We developed our method based 

upon that approach, creating the expression patterns and edge algorithm. When applied to floral transition 

data, the inferred network successfully identified established connections, such as the positive regulation 

of AP1 by LFY14. The general arrangement of each subnetwork where outlying leaf patterns were 
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represented by fewer genes than the central patterns verified the cascading effect initiated by a few genes 

that affect many downstream genes. 

The expression patterns were made to group similarly expressed genes together so that examining important 

expression patterns will identify related genes. Expression pattern importance can be determined through 

the experiment design or previous research, such as the function of LFY in the floral transition data. The 

expression pattern for LFY was (-1, 0, 1, 1, 1, 1) which was shared by two other transcription factors, 

ATREM1 and BETA HLH PROTEIN 93 (BHLH093). ATREM1 has been observed from the vegetative 

apical meristem to the inflorescence meristem and binds to AP1, AP3, PI and SVP29,30. This is confirmed 

in our network where AP1, AP3 and PI are downstream from ATREM1. BHLH093 has been observed in 

several different development stages such as the final stage of leaf development, expanded cotyledon stage, 

and flowering31,32. It is possible that BHLH093 is expressed as a regulator of a concurrent process with 

floral transitioning but is not directly part of the process. 

Similarly, connections to identified expression patterns also helped to find related genes. In our network, 

LFY is connected to AP1 by an additional pattern, (0, 0, 1, 1, 1, 1), which represents the two transcription 

factors, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8 (SPL8) and FOREVER YOUNG 

FLOWER (FYF). SPL8 has been seen to act as a developmental regulator with gibberellins and flowering 

time33,34 while FYF is a repressor of floral organ senescence35,36. 

The final network summarizes the data into 17 subnetworks, each distinguishable by enriched GO terms. 

To illustrate the connectivity between the subnetworks, they were collapsed into vertices 5. The reduced 

graph clearly shows a connection between the two largest subnetworks, 1 and 3. This connection is formed 

by two connecting patterns, indicating a relatively weak link. In contrast, there are 8 and 7 links between 

subnetwork 1 and 4, and 3 and 4 respectively. This suggests that gene regulation of rhythmic processes, 

response to light and other processes found in subnetwork 1 is related to immune responses, response to 

endogenous stimulus and other processes found in subnetwork 3 primarily through transcription factors 

related to the plant hormone, gibberellin. 

Although the inferred network included many floral transition transcription factors, there were several 

patterns of important transcription factors that remained unconnected such as SOC17. The edge 

determination of the network is heavily influenced by the number of time points so that the increase in the 

number of time points will result in a less connected graph due to the higher number of patterns needed to 

make connections. This effect can be decreased by focusing on a narrower range of time points, as we did 

by excluding earlier time periods prior to floral transition. Although it will not always be sufficient, it 

remains that the remaining transcription factors were able to be connected into the network with undirected 

edges. 

CONCLUSION 

By using our method that converts expression values into numeric patterns, we were able to infer a network 

that summarizes temporal changes in gene expression. The network depicts the associations between 

patterns, enabling us to see which patterns initiate changes and which associations had a greater effect. This 

approach improves visualization of time-series data and introduces new ways of investigating biological 

processes. 



Network Inference…               Wong & Aburatani 

4116 J. Chem. Bio. Phy. Sci. Sec. B, August  2015 – October 2015; Vol.5, No.4; 4106-4118 

 

We applied our method to floral transition data from A. thaliana and identified the relationships of 

established transcription factors, LFY, AP1, AP3, AGAMOUS, PI and SPL. By investigating shared and 

connected patterns, we identified other transcription factors that seem to be associated with floral transition. 

Finally, we detected an association between rhythmic process regulation and immune response regulation 

via regulation of gibberellins by using GO enrichment on the inferred network. 
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