Journal of Chemical, Biological and Physical Sciences

An International Peer Review E-3 Journal of Sciences

Available online atwww.jcbsc.org

Section A: Chemical Sciences

CODEN (USA): JCBPAT

Research Article

Synthesis, Characterization, Antimicrobial And Anticancer Activities of Mn(II) Mixed Ligand Complexes of Pentamethylene Dithiocarbamate With Diamines

D.Malathy and R.Vijayanthimala*

Department Of Chemistry, Ethiraj College for Women, Chennai-8, Tamilnadu, India

Received: 08 February 2015; Revised: 22 February 2015; Accepted: 26 February 2015

Abstract: A new series of binuclear Mn(II) mixed ligand complexes of dithiocarbamate(pmdtc) with diamines such as 1,10 phenanthroline(phen),ethylenediamine(en),diethylenetriamine(dien),triethylenetetram ine(trien) are reported. The synthesized complexes were characterized by thermal, elemental, metal, nitrogen and sulphur, UV-Vis, infra-red, ESR Spectral analysis and magnetic susceptibility studies. Antibacterial, antifungal and anticancer studies have also been carried out on these complexes which show moderate activity towards some of the tested microorganisms.

Keywords: Mixed ligand Mn(II)phen/en/dien/trien, Pentamethylenedithiocarbamate, Antibacterial, antifungal, anticancer activities.

INTRODUCTION

In recent years, there has been a renewed interest in the synthesis and study of mixed ligand complexes with biologically significant ligands ¹. Complexes of transition metals with mixed ligands having S and N as donor atoms have found great interest among other coordination complexes²⁻⁴. Dithiocarbamates are versatile ligands by virtue of high selectivity and sensitivity towards reaction with transition metal ions stabilizing a range of oxidation states⁵. Dithiocarbamatemetal complexes have drawn much research attention due to their diverse applications and interesting biological, structural, magnetic, electrochemical and thermal properties⁶⁻¹². They are used as accelerators in vulcanization, as high pressure lubricants, as antimicrobial and anticancer agents. The

dithiocarbamates, both as free ligands and metal complexes are used in agriculture for controlling insects and fungi ¹³. Recently gold (III) dithiocarbamate complexes have been used for treatment of human cancer by suppressing tumor growth via direct inhibition of the proteasome activity ¹⁴.

Dithiocarbamates, act both as unidentate and bidentate leading to tetra and hexa-coordination ^{15, 16}. The wide range of applications of dithiocarbamates prompted us to prepare mixed ligand complexes with pentamethylene dithiocarbamate as one of the ligands. Herein we report Synthesis, characterization, antimicrobial and anticancer activities of Mn(II) mixed ligand complexes of pentamethylene dithiocarbamate with diamines.

EXPERIMENTAL SECTION

The chemicals the preparation are of very pure grade and used employed for purification. The Manganese sulphate used without further for the synthesis analytical grade .Piperidine, carbon disulphide, ethylene diamine, diethylenetriamine, triethylenetetraamine and 1,10phenanthroline are pure grade chemicals from Merck. The chloroform used as solvent in all our studies is distilled by standard procedures. The ligand was prepared as follows, to a solution of piperidine (0.05mol) in chloroform(5ml) constantly stirred in ice added 4ml of sodium hydroxide (10N) and carbon disulphide (3ml,0.05 mol) for about 30 minutes, sodium salt of dithiocarbamate precipitated out. The obtained precipitate was washed with ether and dried in vaccum. The complexes were synthesized by mixing aqueous solution of MnSO₄ 5H₂O (1mmol) and aqueous solution of 1, 10 phenanthroline/en/dien/trien (1mmol) with continuous stirring for 10 minutes. Then aqueous solution of pentamethylene dithiocarbamate (2mmol) was added drop wise with vigorous stirring for 20 minutes. The formed precipitate then filtered off, the complexes repeatedly washed with water and recrystillised from ether and dried in vacuum. The synthesized complexes were characterized by elemental analysis (Nitrogen -kjelhdhal's method ,metal -ICPOES-Inductively Coupled Plasma optical emission spectroscopy- PerkinElmer Optima 5300 spectrometer, Sulphur -gravimetrically by barium sulphate method), thermal analysis-(TGA were recorded in nitrogen atmosphere using NETZSCH STA 490C/CD thermal analyser with a heating rate of 10° C/min), UV-Visible absorption spectra (as solution in chloroform- a schimadu UV 1600 model spectrometer), Infrared spectrum (as KBr disc - schimadzu spectrometer) and EPR Spectra (JES-FA 200 electron spin resonance spectrometer in the region from 1000-8000 guass). susceptibility studies were carried out using Vibrating magnetometer Lakeshore VSM 7410. The antibacterial and antifungal studies were carried out by using agar disc diffusion method originally described by Baeur ¹⁷. The invitro cytotoxicity of the prepared complexes were carried out by MTT based assay 18 with cancer cell line, HELA (human cervical cell line). In parallel the activity was tested on normal cell line, HEK (human kidney cell line).

RESULTS AND DISCUSSION

The complexes are stable, non-hygroscopic and brown colored solids. All the complexes were found to be completely soluble in chloroform, partially soluble in DMSO and DMF and insoluble in alcohol and water. The elemental analysis data of the complexes **Table-1** confirm the proposed composition [Mn₂ (phen/en/dien/trien) ₂(pmdtc) ₂(H₂O) ₂SO₄]. The electrical molar conductance of the complexes at a concentration of about 10⁻³ M in chloroformic solution was found to be 5-10 Ohm⁻¹ cm²mol⁻¹ indicating the non-electrolytic nature of the complexesThe thermal analysis data from TGA for the four complexes are furnished in table-1. The thermograms were run upto 1000° C and final residue corresponds to manganese sulphide. The IR spectral data of the complexes are given in **Table-2**.

The stretching vibration of NH of amines and v O-H of water molecules appears at 3420cm⁻¹ as a combination band. The v NH₂ group of the primary amine appears around 3220cm⁻¹ in these complexes. The aliphatic C-H of amine appears around 2860 cm⁻¹ and v C-H of piperdine appears around 2930 cm⁻¹. The vC=S stretching frequency appears at 1233 cm⁻¹. The two bands around 870-1010cm⁻¹ are assigned to v C-S group of dithiocarbamate moiety and these confirm bidendate and monoionic nature of dithiocarbamate¹⁹. The bands in the region 1250-1350cm⁻¹ are assigned to v N-C stretching vibration, whereas bridging SO₄ appears at 1110-1240 cm^{-1 21}. The 412-519 cm⁻¹ region is associated vM-S and v M-N vibrations vM-S is observed in the region 418-445 cm⁻¹ and may be taken as evidence for the coordination of metal to sulphur. This behavior may be attributed to the electron releasing of the amines, which forces high electron density towards the sulphur atoms, whereas v M-N was observed in the 465-513 cm⁻¹ region²². The electronic spectral data on the complexes are shown in Table- 1.

Table-1: Elemental composition, Thermal analysis and electronic absorption data

Complexes	%	%	%	%	%of	Λmax
	Nitrogen	inorganic	organic		Residue	(nm)
		Sulphur	Sulphur	metal	TGA	
	(theo)	(theo)	(theo)	(theo)	(theo)	
	exp	exp	exp	exp	Exp	
[Mn2(1,10phen)2(pmdtc)2(H2O)2	(8.7)	(3.3)	(13.3)	(11.4)	(18.1)	345,313
SO_4]	7.9	3.1	12.5	11.5	18.09	
[Mn2(en)2(pmdtc)2(H2O)2SO4]	(12.2)	(4.6)	(18.7)	(16.0)	(25.4)	358,450
	11.8	4.8	12.3	15.0	25.32	
$[Mn_2(dien)_2(pmdtc)_2(H_2O)_2SO_4]$	(14.5)	(4.1)	(16.6)	(14.2)	(22.5)	453,355
	13.8	3.9	13.8	13.5	21.12	
[Mn ₂ (trien) ₂ (pmdtc) ₂ (H2O) ₂ SO ₄]	(16.3)	(3.7)	(14.9)	(12.8)	(20.3)	458,353,302
	15.8	3.1	12.53	12.5	20.5	

Table-2: IR spectral data (vcm⁻¹)

Complexes	νN-H	νС-Н	νN-C	νC-S	νM-S	Bridged	
	νО- Н	(amine,				SO4 units	$\nu C = S$
		piperdine)			νM-N		
$[Mn_2(1,10phen)_2(pmdtc)_2$	-	2853,	1381	987	412,	1123	1230
$(H_2O)_2 SO_4$]	3249	2930			474	1220	
[Mn2(en)2(pmdtc)2(H2O)2SO4]	3340	2857,	1353	957	434,	1114	1231
	3228	2928			500	1231	
$[Mn_2(dien)_2(pmdtc)_2(H_2O)_2SO_4]$	3424	2860,	1361	956	438,	1115	1233
	3216	2929			502	1232	
[Mn ₂ (trien) ₂ (pmdtc) ₂ (H ₂ O) ₂ SO ₄]	3416	2853,	1356	963	421,	1124	1232
	3267	2930			514	1234	

Two peaks are observed in the region 325-498 nm..In high spin d⁵ manganese (II) configuration, the (d-d) electronic transitions are spin forbidden and laporate forbidden and hence low intense band

around around 450 nm is assigned to octahedral Mn(II). The peak in the region 350nm corresponds to metal to ligand charge transfer ²³. All the complexes give a single peak in the EPR spectrum and the g value corresponds to 1.97, 2.0, 2.07 and 1.98 for phen, en, dien, trien complexes respectively.

The magnetic suspectibility studies shows an increase in mass in the presence of magnetic field. The VSM plot of magnetic moment in emu vs. field shows hysteresis loop indicating ferromagnetism and negligible height loops and the coercivity suggest that these complexes have significantly small size.

Anticancer studies: The invitro cytotoxicity of Mn (II) based dithiocarbamate complxes are given in Table-3.

Table-3: Anticancer activity in HeLa cell line

Complexes	concentration (ug/ml)	Absorbance (O.D)	Cell viability (%)	Cell toxicity (%)
$[Mn_2(1,10phen)_2(pmdtc)_2(H_2O)_2SO_4]$	cell control	1.2	100	0
	100	0.21	17.72	82.28
	50	0.23	19.3	80.7
	10	0.86	71.31	28.69
	1	1.28	96.07	3.93
	cell control	1.2	100	0
	100	0.96	80.13	19.87
$[Mn_2(en)_2(pmdtc)_2(H_2O)_2 SO_4]$	50	1.05	87.38	12.62
	10	0.97	80.92	19.08
	1	0.77	63.96	36.04
	cell control	1.2	100	0
	100	0.76	63.54	36.46
$[Mn_2(dien)_2(pmdtc)_2(H_2O)_2SO_4]$	50	0.9	74.92	25.08
	10	1.09	90.81	9.19
	1	1.04	86.31	13.69
	cell control	1.2	100	0
$[Mn_2(trien)_2(pmdtc)_2(H_2O)_2SO_4]$	100	0.86	71.69	28.31
	50	0.92	76.25	23.75
	10	0.93	77.53	22.47
	1	0.95	79.13	20.87

All the four complexes shows moderate activity against the cancer cells but seems to have less toxicity towards normal cells. The IC_{50} value of phen, en, dien, trien complexes are 19.30, 87.38, 74.32 and 76.25.

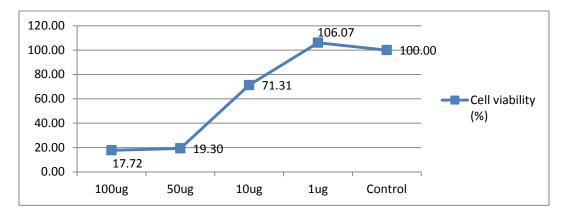


Fig-1: Anticancer activity on HELA cell line of [Mn₂(1,10phen)₂(pmdtc)₂(H₂O)₂SO₄]

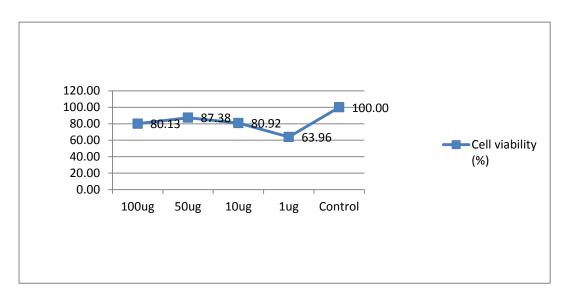


Fig-2: Anticancer activity on HELA cell line of [Mn₂(en)₂(pmdtc)₂(H₂O)₂SO₄]

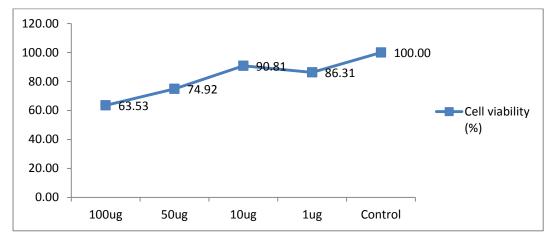


Fig-3: Anticancer activity on HELA cell line of [Mn₂(dien)₂(pmdtc)₂(H₂O)₂SO₄]

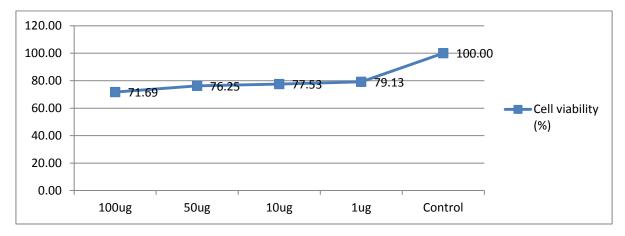


Fig-4: Anticancer activity on HELA cell line of [Mn₂(trien)₂(pmdtc)₂(H₂O)₂SO₄]

Antimicrobial studies: Antimicrobial studies was performed on five bacterial species namely Bacillius subtilis, Staphylococcus auerus, Escherichia coli, Aeromonas Spp and Vibrio Parahemolyticus and three fungus namely Candida albicans, Trichoderma viride and Aspergillus niger. The results for the complexes and commercial antibiotics used as positive control are listed in Table-4, 5.

Table-4: Antibacterial studies

		Zone of inhibition				
		Concentration(µg/ml)		ıg/ml)	Antibiotic	
Complexes	Organisms	1000	750	500	(1mg/ml)	
Bacillus Subtilis		10mm	8mm	6mm	15mm	
	Aeromonas Spp	10mm	8mm	7mm	12mm	
	Staphylococcus aureus	8mm	-	-	13mm	
$[Mn_2(1,10 \text{ phen})_2(pmdtc)_2$	Vibrio Parahemolyticus	9mm	7mm	-	14mm	
$(H_2O)_2 SO_4$	E.coli	11mm	8mm	7mm	12mm	
	Bacillus Subtilis	9mm	8mm	6mm	16mm	
	Aeromonas Spp	-	-	-	13mm	
	Staphylococcus aureus	11mm	8mm	7mm	15mm	
$[Mn_2(en)_2(pmdtc)_2$	Vibrio Parahemolyticus	10mm	7mm	6mm	13mm	
(H2O)2 SO4]	E.coli	-	-	-	10mm	
	Bacillus Subtilis	8mm	-	-	13mm	
	Aeromonas Spp	10mm	8mm	-	14mm	
	Staphylococcus aureus	9mm	-	-	10mm	
$[Mn_2(dien)_2(pmdtc)_2$	Vibrio Parahemolyticus	11mm	8mm	7mm	12mm	
$(H_2O)_2 SO_4$	E.coli	10mm	8mm	6mm	10mm	
	Bacillus Subtilis	9mm	-	-	13mm	
	Aeromonas Spp	10mm	8mm	7mm	12mm	
	Staphylococcus aureus	9mm	7mm	6mm	15mm	
$[Mn_2(trien)_2(pmdtc)_2$	Vibrio Parahemolyticus	8mm	-	-	11mm	
$(H_2O)_2 SO_4$	E.coli	10mm	8mm	-	10mm	

13mm

Zone of inhibition Concentration(µg/ml) Antiobiotic 1000 750 500 Complexes Organisms (1 mg/ml)Candida albicians 12mm 9mm 7mm 14mm Trichoderma Viridi 9mm 7mm 12mm $[Mn_2(1,10phen)_2(pmdtc)_2]$ $(H_2O)_2 SO_4$ Aspergillus niger 9mm 13mm 8mm 7_{mm} Candida albicians 12mm 10mm 8mm Trichoderma Viridi 10mm 15mm 8mm 6mm 9mm 13mm Aspergillus niger $[Mn_2(en)_2(pmdtc)_2 (H_2O)_2 SO_4]$ Candida albicians 8mm 7mm 11mm Trichoderma Viridi 10mm 8mm 6mm 13mm $[Mn_2(dien)_2(pmdtc)_2]$ $(H_2O)_2 SO_4$ Aspergillus niger 10_{mm} 8mm 7_{mm} 12mm Candida albicians 7mm 11mm Trichoderma Viridi 9mm 8mm 6mm 13mm $[Mn_2(trien)_2(pmdtc)_2]$ 9mm

Aspergillus niger

Table 5: Antifungal studies

With increasing concentration of the dithiocarbamate complexes, an increase in the diameter of the zone of inhibition was observed indicating the complexes shows better antibacterial and antifungal activity. The dien complex does not show antibacterial activity against Escherichia coli, Aeromonas Spp even at 1000mg concentration.

CONCLUSION

 $(H_2O)_2 SO_4$

From the above data and various spectral and analytical studies, it may be concluded that the complexes contain two Mn(II) linked by bridging sulphate. The two Mn(II) in the complexes have an octahedral environment with the dithiocarbamate acting bidentate through two sulphur and one aquo ligand and bidentate amine. The investigations revealed that the complexes have significant better antimicrobial and anticancer activity towards the tested organisms and cell lines.

ACKNOWLEDGEMENT

The authors acknowledge the Department Of Chemistry and Instrumentation Centre Ethiraj College for Women, Chennai-8, for the facilities provided and IIT-Madras (SAIF) for recording various spectra.

REFERENCES

- 1. A.Jayaraju, M.Musthak Ahamad, R.Mallikarjuna Rao and J.Sreeramulu. Synthesis. Der Pharma Chemica., 2012,4(3),1191-1194.
- 2. A.J.Blake, L.M.Giby, R.O.Gocild, V.J.Ppolis, S.Parsons and M.Schroder, Acta Crystal, C54, 1998, 295.
- 3. B.Kersting and Z.Naturforsch, 55b (2000), 961.
- 4. I.Gurol, V.Ashen and O.Bekergla, *J. Chem. Soc, Dalton trans.*, 1992,2283.
- 5. S.P.Sovilj, G.Vuckovi, K.Babic, T.J.Sabo, S.Macura, N.Juranic, Journal of Coordination Chemistry, 1997, 41(1,2), 19-25.

- 6. S.T.Breviglieri, E.T.Cavalheiro, G.O. Chierice, Thermochemical *Acta.*, 2000; 356: 79–84.
- 7. E.T.G. Cavalheiro, M. Lonashiro, G.S. Marino, T. Breviglieri, G.O. Chierice, *Transition Metal Chemistry*, 2000; 25, 69–72.
- 8. K.S. Siddiqi,N. Nishat, *Synthesis and Reactivity in Inorganic and Metal Organic Chemistry.*, 200;30,1505-1518.
- 9. D.C.Onwudiwe, P.A. Ajibade, *International Journal of Molecular Sciences*, 2011; 12, 1964-1978.
- 10. V.Scarcia, A. Furlani, D. Fregona, G. Faraglia and S.Sitran, *Polyhedron*, 1999; 18: 2827–2837.
- 11. H.Cesur, T.K. Yazicilar, B. Bati, V.T. Yilmaz, Synthesis and Reactivity in Inorganic and Metal Organic Chemistry., 2001;31 (7), 1271-1283.
- 12. G.Faraglia, D. Fregona, S. Sitran, L. Giovagnini, Marzano C, Baccichetti F, Casellato, Graziani R. *Journal of Inorganic Bio Chemistry*, 2001; 83, 31–40.
- 13. S.P.Sovilj, N.Avramovic, D.Poleti, D.Gjukovic, *Chemists and Technologists of Macedonia*. 2000; 19, 139-144.
- 14. V. Milacic, D. Chen, L. Ronconi, K.R.L. Piwowar, D. Fregona and Q.P. Dou, *Cancer Res.*, 66 (21) (2006) 10478.
- 15. A.J.Odola and J.A.O.Woods, Complexes of dithiocarbamates with Schiff base. *Journal of Chemistry and Pharmaceutical Research.* 2011; 3 (6), 865–871.
- 16. C.Dilip, Sawant, and R.G.Deshmukh, Journal of Chemistry and Pharmaceutical Research. 2011; (6), 464–477.
- 17. A.W.Bauer, W.M.M.Kirby, J.C.Sherris and M.Turck. Am. J. Clin. Pathol. 1966, 36, 493.
- 18. T.Mossman, *J.Immunol Methods*, 1883, 65, 55.
- 19. F.Bonati and R.Ugo, *J.Org.Met.Chem*, 10,57,1967.
- 20. I.Raya, I.Baba, M.M. Yamin, Malaysia, *J. Anal, Sci*, 2006, 10(10), 93-98
- 21. Kazuo Nakamoto, John Wiley & Sons, Inc, Canada, 1986, 86.
- 22. Kalin KD.Prog.Inorg.Chem., 53, John Wiley &Sons, Inc, New Jersey, 2005, 71.
- 23. Y.Nishida and S.Kida, Bull. Chem. Soc. JPn. 1978, 51,143.