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Abstract: This review gathers information on ozone (O3), a Food and Agricultural 

Organization, US Agriculture Department & Food and Drugs Administration 

generally recognized as safe (GRAS) gas for use in food processing (decomposition 

to molecular oxygen without leaving residue). It brings details on the energy source 

for O3 formation, application characteristics and decontamination effect in different 

food, focusing on fungi inactivation and mycotoxins degradation.  A comparison  on  

literature methodology  of  application  regarding  O3 gas  (concentration  and  time  

of  exposure);  food  (type, contamination level or batch size) and container (volume, 

material type, sealed or hermetic), including the effect on fungi (total load, genera, 

species and spores susceptibility), their toxins (aflatoxins, deoxynivalenol, 

fumonisins, citrinin, patulin) and its efficiency/viability for fresh, stored raw and 

processed foods, are covered. From the studies and data reported, O3 has shown to be 

a promising and efficient decontamination “green” agent for fungi and their toxins in 

food (low or high humidity), prolonging the storage and shelf life time.  

http://www.jcbsc.org/
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INTRODUCTION 

Background 

The  increasing  concern  on  environmental  safety  and  human  health,  has  stimulated  the 

development and/or improvement of non-aggressive food disinfection/decontamination oxidizing 

substances in order to avoid and/or minimize their application impact 
1-6

. An oxidant, acceptable from 

the environmental/health point of view must have the following characteristics: to (a) react 

specifically with the living organism/compound to be destroyed/degraded; (b) not form toxic by- 

products (with toxicity equal to or higher than the target contaminant) and (c) be easy to obtain
7,8

. 

Decontaminant agents 

Different  oxidizing  agents  have  been  reported  and  applied  as  decontaminants  to  destroy  living 

organisms  (bacteria,  fungi,  yeast, viruses,  protozoa,  insects  and  mites)  and/or  degrade  toxic 

compounds  (pesticides,  mycotoxins  and  industry  toxic  wastes).  The  chemical  compounds  most 

commonly  used  are:  hydrogen  peroxide,  chlorine,  chlorine  dioxide,  sodium  hypochlorite  and 

potassium permanganate
9-14

. However, their major application concerns are the residues left in food 

and consumer safety. The “green” method that has been shown its decontamination efficiency to post-

harvest high (fruits and vegetables) and low (grain, nuts and pulses) humidity food, without leaving 

residue is ozone (O3), either as gas or in the liquid form 
15-19

.  

OZONE GAS  

O3, the triatomic allotrope of O2, is formed when O2 molecules are broken into individual oxygen 

atoms, which combine with other O2
20

. Due to O2 high stability, O3 molecule undergoes a spontaneous 

dissociation process, again resulting in O2 formation 
21

. The O3 bluish gas decomposition is 

characterized by a rapid decrease of the initial concentration, followed by a second phase in which O3 

concentration decreases as first-order kinetics. Its half life time varies from a few seconds to hours, 

and stability depends on factors, such as pH (aqueous O3) and temperature (gaseousO3), where a 10ºC 

increase, results in 43% half-life reduction 
22

. The O3 half-life in atmospheric conditions  is  about  30  

min  and  reduces  with  higher  temperatures  and  low  pressures  
23,  24

.  

Therefore, being an unstable gas, it requires to be produced at its application site, reducing costs and 

risks related to transportation and storage 
1, 9

. As a very reactive oxidizing agent, O3 has proved 

effective against a broad spectrum of living organisms and chemicals, including bacteria 
17, 23, 24

, fungi 
25, 26

, yeasts 
27-29

, viruses 
21, 30, 31

 and protozoa 
32

. It also has the potential to kill storage pests, such as 

insects 
16

& mites 
33

, as well as, degrade mycotoxins 
31

, pesticides 
34, 35

 and toxic chemical wastes 
9, 22, 

36, 37
. 

Ozone energy sources and apparatus 

The O3 formation can occur both (a) naturally and freely in the stratosphere through the interaction of 

solar ultraviolet radiation with the molecular O2 and (b) artificially through electric dischargers 

reaction or ionizing radiation, being the corona discharger apparatus, the most known and utilized in 

different food processes 
20, 38

.  
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There are different types, sizes and O3 generation capacity ozonators, from laboratory (small sizes and 

low capacities) to storage unities (large sizes and high capacity) for a broad range of applications. 

Some of them can be small (portable for laboratory use), medium (installed along the process plant in 

industries) or large (for grain storage unities) sizes. Their capacities can vary from 125g/h up to 10 

kg/h with electronic controls and alarms
39, 40

.  

Ozone generally recognized as safe applications  

As O3 gas spontaneously converts it molecules into O2 and does not result in harmful species, it has 

been considered by different international organizations and countries regulations as GRAS (generally 

recognized as safe) to be utilized in direct contact to drinking water and food (the US Food and Drug 

Administration – FDA& Agriculture Department - USDA, Food Agriculture Organization - FAO and 

World Health Organization - WHO). FDA/USDA: since 1975 FDA recognizes the O3 treatment a 

GMP (Good Manufacturing Practice) method for the bottled water industry and in 1997,recognized it 

as GRAS for use in food processing 
41, 42

. Further on, O3 was accepted for legal use directly in food 

processing and agricultural products as antimicrobial agent 
43

, including meat and poultry (both in gas 

& aqueous phases). That also was for raw materials and minimally processed vegetables & fruits 
7, 41, 

42, 44
.  

FAO/WHO: approved O3 for bacterial water control as well as food quality and safety controls in the 

processing systems since 1983 
45, 46

. It also defines the benefits and risks of the O3 use as disinfectant 

in the food production are details 
13

. Countries from different continents also recognize the O3 

application mainly in water followed by food. Europe – the European Commission (EC): directive 

2003/40 
47

 established, apart from the list type, concentration limits and labeling requirements for the 

constituents of drinking water (natural mineral and spring), it includes the water O3-enriched and set 

the O3 residue maximum limit (50 µg/l) in natural mineral and spring waters O3-enriched 
47

.  

Brazil: the Brazilian Agricultural and Health Ministries approved the O3 application in equipment for 

filling, closing (including the utensils that come in contact to) water 
48

. It also established in 1999 

standard regulation for purified water, in which bottles labels should inform the purification treatment 

applied, inclusive O3
49

. The Agriculture  Ministry  
50

  established  an  O3  regulation  for  pesticide  

residues  decontamination(organophosphates) in airplanes applicators parking area (to date, 

worldwide, such waste is not treated; or it is just dumped - contaminating rivers, lakes and 

groundwater. Japanese, Australian and Chinese regulations: the O3 use in food has been allowed, 

either in the factory air treatment, the water and food products, as well food materials and food 

processing plants 
51-53

. Apart from those international institutions and countries Agriculture and 

Health Ministries recognizing the use of O3 for food, there is a wide supporting literature attesting the 

benefits of ozonation as an efficient method/procedure  for  food  (raw  &  processed)  living  

organisms  inactivation  and  chemicals degradation, some of them will be reviewed herein. 

OZONE GAS APPLICATIONS IN THE FOOD AREA 

Living organisms inactivation: O3is reported in food against bacteria (Salmonella; Escherichia; 

Pseudomonas; Staphylococcus)
17, 24, 29, 30, 54

, fungi (Botrytis, Fusarium, Aspergillus, Penicillium)
2-5, 

16,55-64
, yeasts

27, 28
, insects (Sitophilus, Rhyzopertha, Tribolium)

16, 33, 39, 65-70
, mites (Tyrophagus; 

Dermatophagoides)
71

 and protozoa (Giardia, Endamoeba, Leichmania)
32, 72-78

. Those living organisms 

proliferation may contaminate food prior and after processing affecting their sanitary conditions to 

consumers. They may cause either: to food - deterioration (bacteria, fungi, insects) and/or toxins 

transfer, thus reducing quality and safety; and to humans - develop of diseases or infections by 
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bacteria, parasites and protozoa by food ingestion or intoxication symptoms (bacteria) and allergies 

(mites).  

Toxic chemical contaminants degradation: Regarding different food chemical contaminants 

degraded by O3, there are the pesticides 
6, 34, 35, 52, 79-82

, mycotoxins 
4, 5, 53, 55, 63, 83-87

 and industry toxic 

wastes 
6, 9, 22, 36, 37, 80, 82

. Their degradation occurs because O3 is able to participate in a large number of 

reactions, mainly with those compounds that contain double bonds such as C=C, C=N, N=N 
22, 36

. 

OZONE GAS EFFICIENCY AGAINST FUNGI AND MYCOTOXINS IN FOOD: 

 Data on O3 food treatments - for fungi (spoilage and toxigenic) inhibition and mycotoxins (field and 

storage) degradation - has been published in less extent, when compared to the focus on bacteria. 

However to date, there have been enough data to conclude that O3 is efficient for their 

decontamination. Tables-1 and 2 present food studies carried out against both contaminants reported 

in the literature, respectively.  

They show treatment differences such as: whether applied on naturally contaminated
53, 55, 88-90 

or 

inoculated/spiked on food samples 
4, 5, 39, 90-92

. The gas concentrations; exposure time versus food 

contamination levels and the food group (cereals, pulses, nuts and fruits) are also detailed including 

the percentage of contaminant reduction. Some of them do inform their effectiveness related to the 

initial (fungi load and toxin level - whether high or just above the MTL allowed) and final (after gas 

treatment) food contamination level, which are quite important information to achieve the O3 method 

concentration effectiveness. Also, some of them do inform fungi genera & species differences on 

susceptibility to that gas and evaluate a broader range of toxins from field (deoxynivalenol – DON, 

fumonisins – FBs) & storage (aflatoxins – AFL, citrinin – CTL, patulin – PTL) fungi origin, that have 

MTL set by different countries regulations, including Brazil and Mercosur 
41, 42, 47, 93

.  

FUNGI INACTIVATION 

In post-harvest, the food (raw, dry or processed) O3 treatments have been carried out aiming to 

improve quality and prevent quantitative losses due to fungi spoilage, either in cereals (maize, wheat, 

rice, barley), pulses (peanuts, peas, lentils), nuts (pistachio, Brazil nuts), fruits (fresh: grapes, kiwi, 

lemons, oranges and dry: figs, raisins) and cheese. Details on antifungal O3 treatments by different 

authors for different food are shown in Table-1. Most of them report their effects on fungi load (total 

fungi count-TFC), aiming only to reduce/inactivate any fungi colony or spores load present on/in the 

food 
2, 4, 5, 27, 28, 39, 57, 64, 85, 91, 94-97

. On the other hand, several of them specify fungi genera 

characteristics, whether toxigenic or only deteriorating strains. Only a few goes into details checking 

O3  gas concentrations and time variation among different fungi genera and species for their specific 

susceptibility (which is shown to vary with the different conditions applied) in order to achieve the 

best effectiveness 
3-5, 16, 39, 56, 62-64, 91, 92, 98, 99

. Those information are important on deciding the efficacy 

of the method to be applied in commercial processes. The fungi contamination extent estimation on 

the food to be treated, prior O3 gas application, will also help to achieve the best performance.  
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Table-1: Ozone applications for fungi inhibition in different foods reported in the literature. 
 

    O3 treatment   
Storage   Fungi & yeasts 

Culture   

Food   

Time   

TFC(CFU/g)   

Reference  

Concentration Unity* Flow Unity* (days) Inhibition (%) Genera & species (isolated/identified/studied) media  

  

(min) Initial After O3  
 

           
 

Cereals             
 

Barley 0.16/0.1 mg/g x min 5.0 NI NI NI 8.3 x10
5 NI 96.0 NI PDA

a [94] 
 

  11/26 mg/g 15/30/60 NI NI NI NI NI 24.0/36.0 Fusarium NI [56] 
 

  3 % 1.0/1.5/3.0 NI NI NA NI NI 100 Penicillium; Aspergillus; Fusarium; Alternaria; PDA [99] 
 

           Rhizoctonia; Acremonium; Mucor   
 

Maize 5 ppm 5 days NI NI NA NI NI 100 A. flavus; F. verticillioides NI [98] 
 

  20/50 ppm 3days 0.054/0.019 m
3
/s NA 43x10

5 16x10
5 63.0 A. parasiticus PDA [16] 

 

  47.800 ppm 1.8
b 258.120 ppm-min NA 10.6x10

3 68
c 99.3/99.9 A.flavus MSM

d [39] 
 

  50/500/1000/15000
e ppm 60.0 0.5 l/min NA NI NI

f 58.0/76.0/50.0/73.0
g Aspergillus, Fusarium, Mucor; Penicillium MEA

h [62] 
 

  50/100/200 ppm 60.0 6.0 l/min 15/30 2.2
i ND

j 100 F. verticillioides MMAM
k [63] 

 

Wheat 280/700 ppb 64h 0.12 m/s NA NI NI 100
l A. alternata, F. avenaceum, F. graminearum MCME

m [100] 
 

  NI NI 5.0 0.33 mg/g/min NA 4.9×10
5 NI 96.9 Fungi (NI) PDA [57] 

 

  3 % 1.0/1.5/3.0 NI NI NA NI NI 100
n Penicillium; Aspergillus; Fusarium; Alternaria; PDA [99] 

 

           Rhizoctonia; Acremonium; Mucor;   
 

  20/40 ppm 5/10/15/20 NI NI NI 1x10
5 NI 95.6 A. flavus PDA [91] 

 

  20/40 ppm 5/10/15/20 NI NI 90 1x10
2 NI NI

o A. flavus PDA [92] 
 

  40/60 µmoL/mol 30/60/120/180 1.0 l/min NA 48x10 ND 100
p F. graminearum PDA [4] 

 

  40/60 µmoL/mol 30/60/120/180 1.0 l/min NA 44×10 5.35×10
1 87.8 

A. flavus; A. parasiticus; P. citrinum; F. 
verticilioides; PDA [3] 

 

           A. flavus; P. citrinum  [5] 
 

Rice
q 10/20/40 mg/l 30.0 1.0 l/min NA 3x10

5 1.4 x 10
2 99.9 Aspergillus; Penicillium; Acremonium; Alternaria PDA [64] 

 

Pulses &Nuts            
 

Peanuts 13/21 mg/l 24/48/72/96h 1.0 l/min NA 6 log 3 log 3 log A. flavus; A. parasiticus PDA [96] 
 

Peas 3 % 1.0/1.5/3.0 NI NI NA NI NI 100
t Penicillium; Aspergillus; Fusarium; Alternaria; PDA [99] 

 

           Rhizoctonia; Acremonium; Mucor   
 

Brazil nuts 10 mg/l 90.0 NI  1/30/60 1.83×10
4 ND 100 A. flavus; A. parasiticus agar [85] 

 

  10/14/31.5 mg/l 180/300 NI  180 4.83 log ND 100 A. flavus; A. parasiticus MEA [2] 
 

Fruits             
 

Citrus 0.3/1.0 ppm continuous NA NI 14 10
6 NA 5 P. italicum /P. digitatum PDA [26] 

 

Dates 1/3/5 ppm 15/30/45/60 NI NI NI 3.93 3.61 NI Yeast/fungi YGC
r [28] 

 

Figs 1/5/10 ppm 180/300 5.0 g/h NI 1.46 log 0.40 log 72.0 Yeast/fungi PDA [27] 
 

  13.8 mg/l 7.5/15/30 6.0 l/min NI 1.73 log ND 100 A. flavus; A. niger; A. parasiticus; Cladosporium PDA [95] 
 

           hiemalis Byssochlamys; Mucor; Scopulariopsis   
 

Grapes 200
s ppm 2/12/12 h 800/1200/2000 ppm/h 7 NI NI 99.0 P. digitatum; P. italicum; B. cinerea PDA [61] 

 

  
75/100/150/200/250/300/500

0 ppm NI NI NI NI 10
6
 spores m/l NI 65.0 B. cinerea NI [97] 

 

              
 

* unities as referred by the authors apotato dextrose agar b3xcdry ozone dmalt salt medium (2% malt extract, 6%NaCl, and 1.5% agar) ehigh humidity (18/22/26%) fcolonies observed per 100 kernelsgAspergillus, 
Fusarium &Mucortreated at 500 ppm and more Penicillium more resistant at 15,000 ppm hmalt extract agar iat0.88 awjnot detected kmilled maize agar media ksame Micomycetes stopped active functioning mmalt, 
czapek and maize extract nPenicillium spp inhibition was 95% oinhibit production of AFB1 by A. flavusp180 minqpaddy rice ryeast extract glucose chloramphenicol agar s35, 75and 95% RH tAspergillus spp 
inhibition was 92%. NI: no indicated; NA: not applied. 
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Table-2: Ozone applications for aflatoxins and others mycotoxins degradation in different foods reported in the literature. 

      Food   O3 treatment       AFLs     Method applied   
 

 

Type 
 Quantity AFLs initial (µg/kg) Silo load (l) 

Conc Unity
a 

 Time  Storage  Degradation (µg/kg)  Inhibition 
Detection 

 

LOD
b
&LOQ

c 
 Reference 

 

   (kg) Artificial Natural Bulk  (min)  (days) AFB1 AFB2 AFG1 AFG2 AFLtotal (%)    
 

  AFLATOXINS                      
 

 Cereals                         
 

 Maize   NI NI NI NI 5 ppm  5 days  NA NI NI NI NI NI 99 NI  NI [98] 
 

    0.001 NI NA NI 20 %wt   5  NA NI NI NI NI NI 66.9/59.8 LC  NI  [109]
e 

 

                    80.8/23.5
d      

 

    30 NA 1,220
f NI 200 mg/min  5,520 (92h)  NI 58.4 NA NA NA NA 95.0 LC  NI [55] 

 

    10 586,8 <2 NA 12 %wt  96 h  NA 47.7 / <2 NI NI NI NI 92 LC  NI [110] 
 

  
 

 
220 

kg/h 17.6 NA NI 47,800 ppm  1.8 (3x)
g  NI NI NI NI NI 5.7 20.0-30.0 TLC

h  NI [39] 
 

    0.1 NA
i 83.0

j 1 40/65/90 mg/l 5 - 40  NI
k 9.9 NA NA NA NA 88.1 LC  NI [53] 

 

 Wheat   NI 10.0/20.0
l NA NI 20/40 ppm 5 - 20  NI 0.66 NA NA NA NA 96.7 LC  NI [91] 

 

  

 

 0.35 231.9 /265.8 NA 2 40/60 μmol/mol 30 - 180  NA 12.51   41.06 47.96 37.81 42.90 94.6 / 84.5 LC/FLD 
0.26 & 3.1 / 0.002 & 0.02 / 

0.28 & [5] 
 

     239.9 / 199.4              (CTR) 80.0/ 81.0  1.41 / 0.005 & 0.03   
 

  Pulses &nuts                      
 

 Peanuts   NI NA 82 NI 0.025 g/min   60  NA 18 ppb NI NI NI NI 78.0 TLC  NI [88] 
 

    0.025 20 ng/g NA NI 4.2 %/weight/ 5 - 15  NI NI NI NI NI NI 77 / 51 LC  NI [83] 
 

         15 psi  25/50/75 °C        80 /51      
 

    1 NA 190 3 13/21 mg/l 24 - 96h  NI 134 NI NI NI 138 25 LC  NI [96] 
 

  

 

 NI 
87.5/22.0/9.7/4.

4 NA NI 89 mg/l   30  NI 15.23 8.31 2.81 2.11 NI 82.6 / 62.2 NI  NI [111] 
 

                    71.1 / 51.8      
 

  

 

 NI 189.5/
m

105.35
n 6.36 / 4.94 NI 50 mg/l  3600/7200

o  NI 
2.83/14.61.3

2 NI NI NI NI 
55.5 / 92.3

p
/73.3 

/ LC  NI [90] 
 

               /5.79     94.5      
 

    1 NA 200 20 3.0/4.5/6.0/7.5 mg/l 10 - 120  NA NI NI NI NI NI 62.1 / 43.0 / LC  NI [86] 
 

                    78.0 / 64.0      
 

 Brazil nut   10 NA 10.6 0.26 10 mg/l   90 1.0 - 60 NI NI NI NI <0.36 100 LC-MS
n  NI / 0.36 [85] 

 

  

 

 2 NA 3.5/1.2 3.6/1. 9 2.2/2.0 14.1 10/14/31.5 mg/l 60 - 300 1.0 - 180 ND ND ND ND ND 100 LC/FLD 
NI & 0.5 / NI & 0.17 / NI & 0.5 

/ NI [2] 
 

      2.3/1.7 11.6/6.0
q                 & 0.17 /NI & 1.34 AFGtotal   

 

 Others                         
 

 Chili
r   0.075 NA 20.0/32.0

s NI 16/33/66 mg/l 7.5 - 60  NI 4/2 NI NI NI NI 80/93 TLC  NI [89] 
 

 Figs   0.2 21.0 NA 3 13.8/1.71
t mg/l 30 - 180  NI 1.01/2.39 NI NI NI NI 95.2 LC  NI [95] 

 

  OTHER TOXINS                     
 

 Apple juice 0.03 2.4 · 10
-3 u PTL NA 12 %   NI  NI NA NA NA NA ND 100 LC-DAD  NI [116] 

 

 Barley     DON  26 mg/cm³           inconclusive    [113] 
 

 Maize   0.075 NA FBs
v NA 0/100/200 ppm   60 15/30 NA NA NA NA ND 100

z LC-MS
n  NI [63] 

 

 Wheat   0.35 1065.10 DON
* 2 40/60 μmol/mol 30 - 180  NA NA NA NA NA NA 100 LC/UV 67 / 119 [4] 

 

    0.35 173.5 CTR
# 2 40/60 μmol/mol 30 -180  NA 12.51   41.06 47.96 37.81 42.90 75.3 LC/FLD  0.2 & 1.2 CTR [5] 

 

a
unities as referred by the authors 

b
limit of detection 

c
limit of quantification 

d
AFB1; AFB2; AFG1; AFG2 , respectively 

e
maize powder 

f
ppb, AFB1

g
258.120 ppm/min (In a modified screw conveyor) 

h
thin layer chromatography 

i
not applicable 

j
mg/kg 

k
not 

informed 
l
AFB1

m
grains

n
peanut pastes 

o
5 l / min

p
natural/artificial contamination 

q
AFB1 AFB2 AFG1 AFG2 AFLtotal in-shell/after shelling 

r
red pepper 

s
flaked/chopped 

t
O3 gas/ozonated 

u
mM of patulin 

v
fumonisisns: FB1, FB2, FB3

z
Not detected fumonisins: FB1, 

FB2, FB3 at 200 ppm treatment O3
*
deoxynivalenol 

#
citrin
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 (a) Effect against fungi in foods  

(a.1) Cereals: most studies focus on reducing the TFC and were carried out mainly for maize, wheat, 

rice and barley. The concentration of O3 gas to be applied vary quite widely from, as low as 0.1 to as 

high as 48,800 ppm (in a very short time - 1.8 min, though) (Table-1). Low concentrations of O3 (5 

ppm) for a long period of exposure (5 days) inhibited 100% of toxigenic A. flavus and F.  

verticillioides in maize 
98

. Kells and others 
16

 studied the application of 50 ppm of O3for 3 daysin that 

grain and found 63% inhibition of toxigenic A. parasiticus. McDonough and others 
39 

evaluated the 

use of a quite high O3 concentrations (48,000 ppm) for a short exposure time (1.8 min) in a maize 

screw conveyor and reported a A. flavus reduction from 10.6x10
3
 to 6.8x10

1
 CFU/g (corresponding to 

99.9% of contaminating strain).  

White and others 
62

 evaluated also the O3 application in maize (with high moisture content - mc) at 

concentration of up to 15,000 ppm for 60 min and reported reductions of 58.0, 76.0, 50.0 and 73.0% 

for Aspergillus, Fusarium, Mucor and Penicillium, respectively. Recently, studies conducted by 

Mylona and others 
63

 reported 100% reduction in  maize contaminated with F. verticillioides by 

applying 200 ppm O3  during 60 min. Raila and others 
100

 applied high concentration of O3  (700 ppm) 

for 63 hours in  wheat and removed  100%  of  contaminating  of  Alternaria  alternata,  F.  

avenaceumand  F.  graminearum.  

Application of 0.33 mg/g/min during 5 min in wheat with 4.9x10
5
 CFU/g fungi load promoted 

96.9%reduction
57

.  Ciccarese  and  others 
99

  applied  air  at  concentration  with  3%  O3  for  3  

min,observing 100% inhibition of Aspergillus spp., Fusarium spp., Alternaria, Rhizoctonia, 

Acremonium,Mucor and 95% of Penicillium. El-Desouky and others 
91

 studied the application of O3in 

wheat atconcentration of 40 ppm during 20 min and observed reduction of 95.6% of A. flavus. On the 

other hand, the maize at mc of 18, 22 and 26% treated with O3 air at high concentrations (500 and 

1000 ppm) for 1 h were more effective on reducing Aspergillus, Fusarium and Mucor than 

Penicillium and Rhizopus.  Indeed,  Penicillium  infections  in  maize  seem  to  be  more  resistant  

and  need  longer exposure.  It  decreases  with  O3  concentrations  of  1,000  and  15,000  ppm,  

being  a  higher  O3 concentration (15,000 ppm) necessary to reduce Rhizopus infection 
62

. When fungi 

inoculated in wheat were treated with O3, Aspergillus and Penicillium showed to be more resistant 

than Fusarium at concentrations of 40 and 60 ppm and different times (30, 60, 120 and 180min) of 

exposure 
4, 5

.  

In study of Savi and others 
4
, F. graminearum growth was significantly reduced (12.5x10

1
 and 4x10

1
 

CFU/g) in the O3 Treated Group after 30 min of exposure at concentrations of 40 and 60 µmol/mol 

when compared to the Control Group (not Treated), that represents a rate of 74.5 and 91.8% spores 

inhibition. In turn, after 180 min of O3 exposition (at the same concentrations) F. graminearum 

growth was totally inhibited. In addition, the same authors, showed that A.  flavus growth was 

significantly  reduced (8.5x10
1
  and  5.35x10

1
  CFU/g)  after  30  min  of  O3  exposure  at  

concentrations  of  40  and  60µmol/mol, respectively (when compared to the Control Group that 

represents 80.7 and 87.8% spores inhibition). The total A. flavus growth inhibition was only registered 

at the highest O3 exposure of (60 µmol/mol) after 180 min. P. citrinum also was significantly reduced 

(8.4x10
1
 and 6.9x10

1
 CFU/g) after 30 min of O3 exposure (both at 40 and 60 µmol/mol) with 67.6 and 

73.4% spores inhibition. That fungi strain total growth inhibition occurred after O3treatment with 60 

µmol/mol during 180 min of exposure 
5
. Also wheat grains had their initial fungi load of 4.9×10

5
 

CFU/g reduced in 96.9% at gas application of 0.33 mg/g/min during 5 min 
57

.  

When paddy rice was O3 treated (40 mg/l; 30 min), the fungi growth reduction (Aspergillus, 

Penicillium, Acremonium, Alternaria and Aureobasidium) was of 99.9% (from 3x10
5
to 
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1.4x10
2
CFU/g).   Data  suggest  an  O3  certain  resistance  by the  genera  Aureobasidium,  

Aspergillus  and Penicillium as well as for yeasts to the conditions applied. The occurrence of fungi 

and yeasts simultaneously and only yeasts for each O3 treatment was significantly different (P<0.05), 

confirming that yeasts are more resistant than fungi in the study conditions 
64

. 

(a.2) Pulses, nuts and dries fruits: although soybean is the main pulse produced worldwide, no study 

has been carried out on O3 to date, to our knowledge. However, peanuts 
96

 and pea 
99

 have been 

studied with quite good results of fungi reduction and spore inactivation (100%) including A. flavus, 

A. parasiticus, Penicillium, Fusarium, Alternaria, Rhizoctonia, Acremonium and Mucor. TheBrazil 

nuts 
2, 85

 when O3 treated at 10 to 31.5 mg/l, had also 100% reduction for A. flavus and A.parasiticus. 

Regarding dry fruits fungi control, their raw material (fresh fruits), which also are most prone to fungi 

and toxins contamination, especially when the ones utilized for dehydration are of low quality  (i.e.,  

already  fungi  deteriorated)  -  they  can  lead  and  end  up  to  similar  (or  higher) contamination 

final dry product. Several studies for dates, figs, citrus and grapes have reported O3 gas efficiency in 

the literature 
89, 95, 101

.  

(b) Mechanisms of living organism’s inactivation  

(b.1) Cells membrane, spore coats and germination effect: the O3microorganism’s inactivation 

occurs in a complex process as that gas attacks several cellular chemical constituents of different 

cellmembranes (proteins, unsaturated lipids and respiratory enzymes), cytoplasm (enzymes and 

nucleicacids) and spore coats (proteins and peptidoglycan) 
21, 102, 103

.Although some authors conclude 

that the molecular O3 is the main microorganism’s inactivator, others emphasize the O3 decomposition 

reactive by-products, as the antimicrobial activity responsible 
104-108

. Indeed, O3 oxidizes several 

compounds responsible for the cell membrane structure integrity leading to contents leakage and cell 

lysis
102,103

.  

 (b.1) Cells membrane, spore coats and germination effect: the O3 microorganism’s inactivation 

occurs in a complex process as that gas attacks several cellular chemical constituents of different cell 

membranes (proteins, unsaturated lipids and respiratory enzymes), cytoplasm (enzymes and nucleic 

acids) and spore coats (proteins and peptidoglycan) 
21, 102, 103

. Although some authors conclude that the 

molecular O3 is the main microorganism’s inactivator, others emphasize the O3 decomposition 

reactive by-products as the antimicrobial activity responsible 
104-108

. Indeed, O3 oxidizes several 

compounds responsible for the cell membrane structure integrity leading to contents leakage and cell 

lysis 
102, 103

.  

 

 

 

 

 

 Figure 1: Ozone gas effect on fungi germination: Aspergillus spores [A] 

before and [B] after ozone treatment 
3
.
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Figure 2 Ozone gas effect (60 ppm, 90 min) on hyphae morphology of (a.1) Fusarium graminearum, 

(b)  F. verticillioides, (c) Penicillium citrinum, (d) Aspergillus parasiticus and (e) A. flavus
3
. 
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Figure 3: Ozone gas effect on hyphae mortality (A) as percentage (average and standard deviation) 

and (B) by Evans blue staining distribution in (a) Fusarium graminearum, (b) F. verticillioides, (c) P. 

citrinum, (d) Aspergillus parasiticus and (e) A. flavus Control and 
1
Treated

3
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Disruption of membrane and spore coat: when the unsaturated lipids (double bonds) and the 

enzymes (sulfhydryl groups) are O3 oxidized, occurs disruption of the regular cellular activities, 

causing alteration of the cell permeability and rapid death takes place. Inhibition of spores 

germination: similarly the membrane, spore coats also suffers the O3 effects. In a work carried out by 

Savi and others 
4
, fungi spores affected by O3 gas lost the ability to germinate. Probably, the coat cell 

membranes alterations occurred, similar to those of bacteria, keeping the respective characteristics of 

robustness (fungi spores are much more resistant). The authors showed that conidia germination was 

strongly inhibited by the O3 gas treatment when compared with the Control group. The most effective 

conidia germination inhibition was observed at the longest period of O3 gas exposure (120 min at 60 

ppm). Under this treatment, the reduction of F. verticillioides, A. parasiticus, A. flavus, P. citrinum 

and F. graminearum conidia germination were 39, 27, 17, 9 and 3%, respectively, when compared to 

Control (80, 96, 84, 98 and 99%, respectively). Figure 1 shows the effect of O3 gas treatment on A. 

flavus spore germination.  

(b.2) Hyphae morphology, mortality and ROS effects: The effect of the O3 gas direct exposure on 

fungi morphological alterations and cell death still is not understood.  Therefore,  knowing  the  

mechanism  of  action  of  the  O3   gas  exposure  on filamentous fungi is essential to evaluated its 

efficacy as decontamination agent. Hyphae morphology: in a study to evaluate the gas effect (at 60 

ppm and 90 min exposure) on fungi (F. graminearum, F. verticillioides, P. citrinum, A. parasiticus 

and A. flavus) strains hyphae morphology and growth development, Savi and Scussel 
3
 showed that 

the O3 gas exposure caused morphological  changes  during  the  formation  of  fungi  structure  

(conidia  and  hyphae),  possible resulting in ruptures of the fungal cell membrane and growth 

reduction (Figure 2).  

Hyphae mortality: The O3 gas treatment also was effective for hyphae mortality in the concentration 

of 60 µmol/mol treated for 120 min. The percentage of hyphae mortality after O3 gas exposure was 

the highest in F. graminearum (97%) and P. citrinum (96%), followed by F. verticillioides (77%), A. 

flavus (51%), and A. parasiticus (49%). In the Control strains, the percentage of hyphae mortality 

were very low for F. graminearum (1%) and A. parasiticus (3%), followed by A. flavus (4%), P. 

citrinum (5%), and F. verticillioides (7%) 
3
 (Figure 3). ROS effects: the O3 gas exposure showed an 

increase in the ROS production in the treated hyphae, this may be related to a chemical stress caused 

by O3 gas. All fungi after treatment showed a strong intensity green fluorescence inside the hyphae 

structure due to the intracellular ROS formation 
3
 (Figure 4).  

 

 

 

 

 

 

 

Figure 4: Reagent 2,7-dichlorohydrofluoresce in diacetate (H2DCFDA) effect on ozone 

treated fungi (60 ppm, 120min) on ROS** production: (a) F. graminearum, (b) F. 

verticillioides, (c) P. citrinum, (d) A. parasiticus and (e) A. flavus 
3
. 
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MYCOTOXINS DEGRADATION 

Apart from fungi, also treatments with O3 gaseous have demonstrated efficacy on reducing 

mycotoxins food contamination. They were mainly reported in cereals, pulses and nuts (Table 2). 

Most of them presented AFLs degradation after being O3 treated and only a few reports against other 

toxins producedeither by field (DON, FBs) and storage (CTR, PTL) fungi. 

(a) Effects against toxins in food  

(a.1) Aflatoxins: regarding CEREAL andO3 treatment against AFLs, they were mainly for maize 
39, 53, 

55
 and wheat 

4, 5, 91, 92
. Maize had reduction of 66.9, 59.8, 80.8 and 23.5% of AFB1, AFB2, AFG1 and 

AFG2, respectively, at O3 20 %wt and 5 min exposure 
109

. Other work carried in maize had reduction 

of 95% of AFLs total (AFLtotal) at 200 mg/min and 92 h exposure
55

. Prudente and King 
110

 applied 12 

%wt of O3 in maize during 96 h and observed a reduction of  92% of AFB1, resulting in final 

contamination of less than 2 µg/kg. After 60 µmol/mol O3treatment, Savi and others
5
 showed that the 

AFLs levels were significantly reduced to 12.51, 41.06, 47.96 and 37.81 µg/kg after 180 min (Control 

group - 231.88, 265.79, 239.92 and 199.44 µg/kg),  which  corresponded  to  94.6,  84.5,  80.0  and  

81.0%  of  AFB1,  AFB2,  AFG1  and  AFG2 reduction, respectively. On the other hand, after 40 

µmol/mol O3 treatment at the same exposure time, only AFB1 and AFB2 were significantly reduced to 

43.78 and 68.79 µg/kg (88.6 and 74.8%). Additionally, it is possible to say that the AFB1and AFB2 

were the mycotoxins that presented the best results regarding the two concentrations (40 and 60 

µmol/mol) treatment. On the other hand, for PULSES, only studies on contaminated peanuts, O3 AFL 

decontamination were carried out 
83, 86, 88, 90, 96, 111

. Although soybean is the main pulse produced 

worldwide, no study has been carried out on O3 to date to our knowledge against mycotoxins. 

However, peanuts were in deep, especially due to its mycotoxin (AFLs) most prone contamination. 

Dwarakanath and others 
88

, applied 0.025 g/min of O3 (60 min) in contaminated peanuts (AFB
1
: 82 

ppb) and obtained 78% of reduction, remaining only 18 ppb of AFB
1
. Application of O3 (4.2 wt%) 

promoted reduction of up to 80% in artificial contaminated peanuts (AFB1: 20 ng/g) 
83

. More recently 

several authors reported application of different gas concentration  (from  6.0  to  89  mg/g)  and  

obtained  from  25  to  94.5%  reduction  in  the  AFB1contamination 
86,  90,  96,  111

.  DRY  FRUITS  ,  as  

they  are  prone  to  fungi  infection (especially if the fresh fruits are of low quality - fungi 

deteriorated) toxin contamination is expected and several studies have been reported in the literature 
89, 95, 101

. In a study carried out by Zorlugenç and others 
95

 authors observed O3 application at rate 13.8 

mg/l in dried figs during 180min and reported AFB1 reduction of 95.2% (Table-2).  

(a.2) Deoxynivalenol: Regarding field toxins and O3 gas treatment, DON and FBs were studied, 

mainly on wheat 
3, 112

 in spiked DON maize 
113

 and in culture media too 
3, 112, 114

. Li and others 
112

 

reported that, O3treated scabbed wheat, had 93.6% of DON degraded and the method applied was 

more sensitive under high moisture at concentration of 10 ml/l during 4 h. In addition to the gaseous 

O3, a work carried out, utilizing aqueous O3 though, against the trichotecenes toxins (DON,   3-acetyl   

DON,   15-acetyl   DON,   diacetoxyscirpenol,   fusarenon,   HT-2   toxin,   15-monoacetoxyscirpenol, 

neosolaniol, T-2 triol and verrucarol) reported being able to identify the degradation compounds 

including different intermediary products formed 
115

. Savi and others 
4
 showed that the DON levels 

reduced in the wheat grains, as they were exposed to O3 treatment. Regarding  the  grain  pericarp  (O3  

exposure  at  120  min  of  60  µmol/mol),the DON  levels  were significantly reduced. The same 

effect was present in the grain endosperm, although at different magnitudes (O3 gas had a greater 

impact on the wheat grain external part than in the endosperm, where DON may not easily be 

eliminated).  

(a.3) Others toxins: apart from AFLs and DON, also, FBs (FB1, FB2, FB3 and hydrolyzed FB1),CTR. 
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and PTL were studied to date in wheat, maize and apple juice for O3 decontamination
5, 63,116

. In  study  

of  Savi  and  others
5
,  the  CTR  levels  reduced  after  O3  treatment  at  both concentrations (40 and 

60 µmol/mol) after 180 min of exposure, i.e., 29.4 and 75.3% reduction. The treatment at 60 

µmol/mol showed the best results, as it substantially reduced after 30 min of exposition when 

compared to Control Group.  

(b) Mechanisms of mycotoxin degradation by O3 

The O3 mycotoxins degradation reaction occurs due to its oxidative action on their specific toxicity 

site (double bounds). It includes further aromatic rings opening leading to total degradation or causing 

chemical modifications, thus, reducing toxicity to low levels or becoming nil 
31, 90, 109, 114

.  

(b.1) Aflatoxins: The furan portion of AFB1 & AFG1 is considered to be the foundation of both toxic  

and  carcinogenic  activities,  being  the  double  bond  (C8=C9)  the  toxicity determinant  site. 

Therefore, that bond removal is the major goal of detoxification. By applying O3, it reacts with that 

AFLs bond (through an electrophilic attack Criegee mechanism based) forming a vinyl ether (at the 

terminal furan ring) and an intermediary compound is produced (AFL ozonide) which suffers further 

degradation  into  non-toxic  compounds  (carboxylic  acid,  aldehyde,  ketone  and  carbon  dioxide) 

(Figure 5). Any O3 in excess is fast self-decomposed and so no residue remains in food 
51, 109, 117-119

. 

Recently, two Chinese scientist groups evaluated AFLs degradation by O3 (utilizing a more accurate 

and sensitive equipment) in naturally contaminated (peanut and maize) samples with initial levels of 

200 and 83 µg/kg, respectively 
53, 86

. Chen and others 
86

 studied the AFLs detoxification mechanism in 

peanuts when exposed to O3 by LC and their findings corroborate to those of McKenzie and others 
109

.  

 

Figure 5: Degradation of aflatoxin B1 and B2 by ozone
109

. 
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Indeed the dihydrofuran rings double bonds of AFB1 and AFG1 structures are more easily attacked by 

the gas which convert them into non-toxic compounds (the acids, aldehydes and ketones). Luo and 

others 
120

 as McKenzie and others 
109

 studied maize and confirmed that the degradation begins at the 

same AFB1 double bond position with O3 addition by LC/QTOF. The authors predicted the 

intermediaries (molecular formulas) formed from O3 treated AFB1. The toxicity of the AFB1 

degradation compounds (from naturally contaminated peanuts and maize) were tested (on turkeys, 

mice, and human liver cells) and proved that their toxicity reduced to nil 
55, 121

.  

Spiked versus naturally AFL food contaminated: some literature reports that the efficiency of O3 in 

theAFB1 inactivation in artificially (spiked) contaminated food products are higher than those from 

naturally contaminated 
83, 96

. They explain that data obtained in artificially contaminated food products 

are better because the AFLs are found only on its surface with a more uniform distribution, easier for 

the O3 gas to react. While in naturally contaminated products, the AFLs may be present, apart from 

surface, also within the product structure (pericarp, testae, between cotyledons/germen) as it occurs 

primary with the fungi spore growth (aflatoxigenic) occurring from surface to inside the food product 

with subsequent AFL synthesis - leading to a heterogeneous distribution 
90

. Despite that, a number of 

works studied with naturally contaminated food 
2,85,120 

reaching successful O3 decontamination.  

(b.2) Deoxynivalenol: the O3 DON mechanism of degradation occurs as for AFLs, i.e., by attacking 

the double bond (C1=C3) leading to ozonide formation. Being an unstable molecule, its further 

disintegration leads to non-toxic compounds (carbonyl, carboxyl and/or ketones) 
31

. Tiwari and others 
114

 showed the DON O3 treated degradation and products formed (Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Degradation of deoxynivalenol by ozone
114

. 
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Figure 7: SEM images of microstructure characteristics of wheat grains: (A) Control and treated 

with 60 μmoL/moL ozone treatment - for (B) 120 min and (C) 180 min on pericarp (1) external 

surface (B/C); (2) brush; (3) internal surface and (4) isolated starch 
4
 

In addition, Young and others 
115

 evaluated DON O3 degradation in aqueous solution, which the 

authors reported also intermediary products formed.  Regarding gas and aqueous O3 effectiveness, it is 

important to emphasize that gas application leads to much more contact to food components than 

aqueous. Moreover, it does not increase moisture (which induces microorganisms’ growth and/or food 

degradation reactions to take place or a new step to be added - drying - during food be submitted). 

Inclusive gas gets deeper into food from surface, reaching hidden areas (interstice) where the fungi 

spore also may be found, making it easier and more efficient to be destroyed. 
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EFFECT OF O3 TREATMENT ON FOOD COMPOSITION AND SEED GERMINATION 

Food composition 

Regarding the effect of O3 on food composition (either raw or processed), studies have reported none 

or quite low O3 interference on chemical components which is what one would need to know 

regarding commercial application and food quality 
4, 33, 122-125

.  

(a) Starch - in a study of Savi and others 
4
, only the highest O3 concentration (60 µmol/mol at 180 

min) was able to increase the carboxyl content of treated wheat starches. Nevertheless, the O3 

treatment did not cause alterations in the starch crystallinity. The same findings were shown by 

Sandhu and others 
124

 utilizing low concentrations of O3 (1.5 µmol/mol at 30 and 45 min), which did 

not produce significant difference in the starch crystallinity treated and the Control 
4, 124, 125

.  

(b) Lipid - Savi and others 
4
 reported that the lipid peroxidation results showed no significant 

(p>0.05) differences between the Control and the O3 treated wheat samples at 60 ppm for 180 min. 

Crowe and others 
126

 investigated the influence of aqueous spray treatments of 1 mg/l and 1.5 mg/l O3 

on the microbial and chemical quality indices of Atlantic salmon fillets and analysis indicate that O3 

concentration did not significantly affect the fish oil oxidation.  

(c) Protein - in a study of Savi and others 
4
, SDS– PAGE (reduced and non-reduced) were used to 

analyze the changes on protein pattern in O3 gas exposed wheat grains (60 ppm for 180 min). There 

was no major differences in most of the visible bands in the Black Test, Control and Treated Groups. 

Similar studies on proteins were also carried out by Cataldo
122, 123

 and Perry and others 
127

.  

(d) Vitamins, ferulic acid, phytic acid:Apart from carbohydrates, lipid and proteins, wheat grains 

O3treated(generated in situ) for decontamination  either for insects,  fungi,  bacteria,  mycotoxins,  

pesticides, had their grain checked  whether  the treatment might induce alterations (on vitamins, 

ferulic acid and phytic acid) and no significant difference were detected between grains O3 treated and 

untreated 
128

.  

(e) Fatty acids & amino acids composition and the characteristics of wheat milling & baking: 

studies of the O3 flow through a column of 3 m wheat was carried out by Mendez and others 
33

. 

Authors reported that as the O3 flow rate increased (from 0.02 to 0.04 m/s), a deeper gas penetration 

on wheat was facilitated and O3 treatment during 30 days (50 ppm) did not produce any adverse effect 

on fatty acids and amino acids composition. The same was reported on the characteristics of wheat for 

milling and baking. It should be noted that some modifications (deformations and ruptures) may occur 

in the grains structure after exposure to the oxidizing agent, however,  the  SEM  images  of  wheat  

grains  microstructure  characteristics  did  not  demonstrate apparent damage caused after O3  

treatment at 60 ppm for 120 and 180 min 
4
. The external and internal surface of pericarp grain, brush 

pericarp and isolated starch were intact when compared to Control Group (Figure 7). 

Seed germination  

Regarding  the  O3  effect  on  wheat  grain  germination  behavior,  it  was  observed  slight 

germination capacity reduction (12.5%), no modifications on seeds coleoptile length and on the 

seminal root (up to 180 min of gas exposure at 60 µmol/mol concentration). In addition, even after O3 

gas treatment (60 µmol/mol) at a shorter time of exposure (120 min), no effect on germination was 

observed 
4
 (Figure 8). According to Wu and others 

57
, by applying different O3 doses (0.016, 0.065, 

0.16 and 0.33 mg/g wheat/min), no effect on wheat germination was observed even after 60 min of 

exposure to that gas. However, at the concentration of 0.98 mg/g wheat/min, the germination rate 

reduced to 61.3% at 45 min of exposure to O3.  It is important to emphasize that effective inactivation 
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of fungi and mycotoxins had already been achieved far below the thresholds for germination 

reduction, and therefore showed to be an effective method for stored wheat grains protection.  
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Figure 8: Wheat germination after ozone (O3) gas treatment (A) percentage at 60 µmol/mol for 

120 and 180 min [symbol indicate statistically significant when compared to Control *p<0.05 

by Tukey test]; (B) germinated seed [60 µmol/mol for 180 min] 
4
. 

CONCLUSIONS 

O3 is a strong oxidant and an effective alternative to traditional processes against a variety of fungi 

genera and their toxins apart from pesticide residues and other contaminants. Total fungi load, as high 

as 10
6
 CFU/g, can be efficiently destroyed by O3 gas (at 1.0 ppm), and that reduces the problem in a 

broad range of raw and processed food. In addition, toxigenic fungi have been demonstrated being 

destroyed in a variety of foods (barley, maize, wheat, rice, dates, figs, Brazil nuts, peas, peanuts, dry 

fruits) by O3 gas, with concentrations ranging from 0.3 to 5,000 ppm (mean 40 to 100 ppm) and 

exposure times from 5 min to continuous (mean 40 to 60 min). Mycotoxins  (AFLs,  FBs,  DON,  

PTL  and  CTR)  are  destroyed  by  that  gas  at  adequate conditions (concentration and time of 

exposure) as long as they are adjusted to the characteristics of food to be decontaminated and the 

toxin level. Regarding fungi genera and species, Fusarium followed by Penicillium and Aspergillus 

are the most efficiently O3 destroyed and studied to date. Despite of data reported on that gas 

efficiency in different contaminants (insect, fungi, yeast, toxins and pesticides) in food, there is a need 

of studies on its application in larger and adequate installations for effective O3 application. Important 

factors to be considered are the materials properties to be treated (surface roughness and 

imperfections, presence of mechanical damage, material permeability, porosity) and also the 

environmental conditions (relative humidity and temperature). 
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