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Abstract:  We have studied the dynamics of the collective excitation for a partially 
condensed harmonic trapped quasi two-dimensional bosonic gas. Using the gapless 
second-order theory we have evaluated the excitation energy. Our evaluated results for 
temperature dependent mean-energies show that the Kohn theorem is quite accurately 
satisfied for temperature T<0.8 Tc. Our theoretically evaluated results are also in good 
agreement with those of other theoretical workers. 
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INTRODUCTION 

The partially Bose-Einstein condensate trapped atomic gases provide an excellent test bench for 
developing finite temperature quantum theories. These weakly interacting systems can be modeled from 
first principles, and the experiments yield accurate and detailed information for comparison. Especially, 
the energies and decay rates of low-energy collective excitations have been measured tests for theoretical 
models. 

For dilute condensates at temperature much lower than the condensate temperature Tc’ the Bogoliubov 
approximation consisting of the Gross-Pitaevskii (GP) equation for the condensate wave function and the 
Bogoliubov equations for the quasi-particle excitations have proven to be accurate in describing the 
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collective modes of the system. For higher temperatures one has to take into account the effects of the 
thermal gas component. Developing a theory that is computationally feasible and correctly models the 
system at temperature approaching Tc is a challenging task. The most commonly used finite-temperature 
theory is the Hartree-Fock-Bogoliubov-Popov (HFB-Popov) approximation. It neglects the dynamics of 
the thermal gas and  modifies the particle correlation induced by the condensate. It predicts quasi-particle 
energies in fair agreement with the experiment. 1 The energy of the quadruple modes having azimuthal 
angular momentum quantum number qθ= ±2 deviates from the theoretical prediction for temperature 
above 0.6Tc , but lately this deviation has been interpreted to mainly arise from improper modeling of the 
time dependent external potential used in the experiments to excite the collective modes.2 

In order to take into account the leading order quasi-particle interactions and the correlation induced by 
the condensate in the inhomogeneous case, several theoretical approaches have been suggested.3-10 The 
dynamics of the condensate and the thermal gas has also been studied using various kinetic  theories.11-15 
The second-order theory for inhomogeneous, partially condensate gases presented in refs. 9,10 uses 
systematic perturbation theory to take into account the interaction terms in the Hamiltonian. Recently, 
this theory was extended to take into account the time-dependent external perturbation used to drive the 
system in the experiments, leading to an agreement with the measured energies and the damping rates of 
the collective modes.2,16 

The second-order theories are computationally challenging, and there have been only a few numerical 
investigations of their prediction.2,17,18 In this paper, we calculate the spectral distributions of the quasi-
particle energies for a partially condensed Bose-Einstein Condensate (BEC) and compare the quasi-
particle energies to the HFB-Popov results as function of temperature. Especially, we analyze the quasi-
particle dynamics implied by the spectral distributions, observing that some collective modes should 
exhibit notable collapse and revival effects in trapped condensates. The possible existence of this 
phenomenon has been pointed out previously in Ref. 9,10, but it has not been studied in detail before. The 
collapse and revival of the excitations indicate that the energies and the damping rates alone do not 
suffice to describe the dynamics of these modes, i.e., the commonly used damped sinusoidal fit to the 
experimental data may be sufficient to describe the longer term dynamics of some modes.19-24 

2.0 MATHEMATICAL FORMULAE USED IN THE EVALUATION    

Second-Order Theory 

In this section, one presents the second-order formalism for calculating the quasi-particle spectral 
distributions for a partially condensed, dilute, trapped BEC at finite temperatures. The starting point is 
the usual second-quantized Hamiltonian for structure less bosons 

† † † †1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2

SP
i j i j k m

ij ij

H H J a a ij V km a a a a= +∑ ∑
    (1)

 

Where the creation and annihilation operators for a particle in state |i) are denotes by â   and   
respectively. The single particle Hamiltonian is given by the sum of the Kinetic energy and the external 
trapping potential as  

2 2

ˆ ( )
2
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trapH V r
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∇= − +h
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and the dominant s-wave scattering at low temperature can be modeled by the effective low energy 
interaction potential  

( ) ( )24 a r
V r

m

π δ
=

h

 (3) 

where a is the scattering length and m the atomic mass. This effective potential is inapplicable at high 
energies and leads to ultraviolet divergences in the theory, which have to be renormalized in a proper 
way. 

We choose to use canonical ensemble with fixed total number of particles N. By defining the bosonic 

number conserving operators ( ) 1/2

0 0
ˆˆ ˆ ˆ1 iN a aα

− = +
  

, where the index 0 refers to the condensate state 

and †
0 0 0

ˆ ˆ ˆN a a= , one can write the Hamiltonian (1) as 

5
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Where, 
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and ˆ ˆ ˆ
ex exN Nδ = −  is the number fluctuation operator of the non-condensate particles. The symmetries 

elements of the two-particle interaction potential V(r) are defined as  

1

2
sij V km ij V km ij V km = + 

                  (6)
 

And λ as 

λ = +0 00 000
$H j N Vsp s

                                (7) 
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Where the average number of atoms in the condensate state is given by 0
ˆ

exN N N= − . Above the 

average {…} refer to quantum expectation values and H.c. for Hermitian conjugate. 

In the zeroth-order approximation, one solves the ground state 0  of 0Ĥ  alone, which makes the linear 

Hamiltonian 1
ˆ 1H  vanish. The excitations are found in lowest order by diagonalizing 2Ĥ  and the number 

of the condensed particle 0N  has to be tuned such that the total number of particles satisfies 

0 exN N N ⋅= +  

It is convenient the use an orthonormal single-particle basis ( )i r r iζ =  for all i = 0, 1…, where 

( )0 rζ  is the condensate wave function given by the Gross-Pitaevskii equation 

( ) ( ) ( ) ( )
2 2

22
0 0 0 0 0 2 02 trapr V r N U r r

m
ζ ζ ζ ζ λζ∇− ∇ = + =h

 (8)
 

with 2
0 4 / .U a mπ= h  . The GP equation is obtained by minimizing 0Ĥ  with respect to ( )0 rζ .  

Diagonalizing  2Ĥ using the Bogoliubov transformation  

 

( ) ( )( ) ( )

( ) ( )*( ) ( )
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where ( ) ( )
0i ij jj

u r U rζ
≠

=∑  and ( ) ( )
0i ij ij jj

u r U V rζ ∗
≠

=∑  are the quasi particles. i∈ the quasi-

particle energies, and operator ( ) ( ) 2

0 0 0
ˆ 2spL r H N U rλ ζ −= − + and ( ) ( )2

0 0 0M r N U rζ=  have 

been introduced. The quasi-particle amplitudes must satisfy the orthogonality and symmetry relations 
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We express the particle operators in terms of the quasi-particle operators, yielding 

 ( ) ( ) ( ) ( ){ }2 2 2

0
i i i i

i

p r u r r n rυ υ
≠

 = + +
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            (11)
 

( ) ( ) ( )( )
0

2 1i i i
i
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≠

= +∑
                                (12)

 

One finds the perturbative Hamiltonian 

 0 1 2 3 4
ˆ ˆ ˆ ˆ ˆ ˆ

pertH H H H H H= ∆ + ∆ + ∆ + +
                   (13)

 

Where the nonquadratic term  Ĥ3 and Ĥ4 are to be calculated using the improved condensate wave 

function. Note that our notation ∆Ĥi differs somewhat from that in Refs. 9, 10. 

The perturbation term ∆Ĥ0 is just a real number and can be easily taken into account. In addition to it, in 
first-order perturbation theory only the terms ∆Ĥ2 and Ĥ4 containing even numbers of quasi-particle 
operators contribute to the energy shift. 
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( ) ˆ,1pert pertE s s H s=
                            (14)

 

where s  is a quasi-particle occupation number eigenstate. In second-order perturbation theory, one can 

in fact neglect the terms ∆Ĥ2 and Ĥ4 because it turns out that their contribution is of the same order as 
the contribution of the other terms in third-order perturbation theory. 9, 10 Thus, one needs to calculate 
only  

( )
2

1 3
ˆ ˆ

,2pert
r s s r

r H H S
E s

E E≠

∆ +
≈

−∑
                (15)

 

The quasi-particle energies are calculated as total energy changes in the system which the corresponding 
quasi-particle occupation number by 1, while the total number of particles is held constant. This yields 
the corrected excitation energy 

( ) ( )4 3
p p p P

P P shapeE Z E E E E Zλ′ ′=∈ +∆ + ∆ + ∆ + ∆
       (16)

 

where the ∆ terms are given in Eqs.(16) and the complex energy parameter ź should not be mixed with 
the fugacity. Calculating the excitation energies as function of ź yields the dynamics of the excitations in 
the following way. The time evolution operator Û(t) of the system may be written in terms of the Fourier 
transform of the resolvent operator 

( ) ( ) 1ˆ ˆG Z Z H
−

′ ′= −
                                           (17)
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π

∞ −
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h
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          (18)
 

Numerical Methods 

One considers a pancake-shaped system in a harmonic potential 

( ) 2 2 2 2 2 21 1 1

2 2 2trap x y zV r m x m y m zω ω ω= + +
                   (19)

 

where the trapping frequencies are r x yω ω ω= =  and zω with z rω ω>> . For sufficiently strong 

trapping potential in the z direction, the condensate wave function and the thermo-dynamically relevant 
quasi-particle amplitude can be approximated to be in cylindrical coordinates (r, θ, z) of the factorized 
form 

( ) ( ) ( )0 0
imr r z e θζ ζ σ=

                      (20)
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where ( ) ( )2 2/2 2 1/2/zz a

zz e aσ π−
 is a Gaussian profile and /i ia mω= h  are the harmonic oscillator 

lengths of the trap. 

DISCUSSION OF RESULTS 

In this paper, we have evaluated the temperature dependent mean energies of excitation of Bose-Einstein 
Condensate. For numerical estimation, we have taken a model of pancake – shaped cloud consisting of N 
= 2000 23Na atoms trapped with trapping frequency ωc = 25 x 350 Hz. The radial trapping frequency ωr = 
ωx = ωy may be chosen freely with only the constraint ωz > ωr . The parameters are chosen from ref. 23. 
We have taken the theoretical formalism of M. Mottene, S.M.M. Virtaken and M.M. Salomara.25 In table 
T1 , we have shown the evaluated results of temperature dependent mean energies of the excitation using 
second order theory together with HFB-Popov theory and exact energy of Kohn modes. Kohn modes are 
also called center of mass oscillation modes.26 According to Kohn thorem27 a system of harmonically 
trapped interacting particle in any eigenstate of the Hamiltonian has an eigenstate with the amount ħωi . 
The Bogoliubov theory, in which the thermal gas components is neglected, implies Kohn modes to have 
this exact energy. In higher order theories, the dynamics of the thermal gas and its interaction with the 
condensates have to be taken into account accurately and obtained results are in agreement with the Kohn 
theorem. In our calculation, it is shown that within the second order theory, the energy of the Kohn mode is very 
close to ħωr for temperature T < 0.8 Tc. Our evaluated theoretical results are also in good agreement with those 
of the other theoretical workers 28-30. Some recent results 31-35 also reveal the similar findings. 

Table-1: An Evaluated results of temperature dependent mean energies of the excitation modes 
using second order theory and also with HFB-Popov (Hartree-Fock-Bogoliubov) theory. The exact 

energy ħωr of the Kohn modes are also given 

T/Tc 
E/ħωr  

Second-order Theory HFB-Popov Theory Energy of Kohn Theory 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

2.058 

2.092 

2.145 

2.181 

2.226 

2.274 

2.345 

2.378 

2.455 

2.481 

2.550 

2.153 

2.224 

2.278 

2.324 

2.359 

2.396 

2.438 

2.473 

2.524 

2.545 

2.607 

1.079 

1.082 

1.097 

1.116 

1.132 

1.138 

1.142 

1.145 

1.154 

1.166 

1.178 
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