Journal of Chemical, Biological and Physical Sciences

An International Peer Review E-3 Journal of Sciences

Available online atwww.jcbsc.org

Section B: Physical Sciences

CODEN (USA): JCBPAT Research Article

An Admitting H-Projective Vector Field in Kaehlerian Spaces with Constant Scalar Curvature

U.S. Negi

Department of Mathematics, H.N.B. Garhwal (Central) University, Campus Badshahi Thaul, Tehri Garhwal – 249 199, Uttarakhand, India.

Received: 03 August 2014; Revised: 20 August 2014; Accepted: 27 August 2014

Abstract: Ishihara¹ has studied holomorphically projective changes and their groups in a almost complex manifold and also proved on holomorphic planes. Obata² has defined and studied Riemannian manifolds admitting a solution of a certain system of differential equations. Also, Negi and Gairola^{3,4} have explain an admitting a conformal transformation group on Kaehlerian recurrent spaces. In this paper, I have defined and studied an admitting H-projective vector field in Kaehlerian spaces with constant scalar curvature and several theorems have been proved. Also, then find necessary and sufficient conditions for such a Kaehlerian space to be isometric to a complex projective space with Fubini-Study metric.

Keywords: Almost Hermition spaces, Kaehlerian spaces, H-projective vector field, associated covariant vector field, Fubini-Study metric.

MSC 2010: 53C15, 53C50, 53C55, 53C80, 53B35.

INTRODUCTION

Let M be a connected Kaehlerian spaces of complex dimension \mathbf{n} covered by a system of real coordinate neighborhood (U; x^h), where, here and in the sequel the indices h,i,j,k,\ldots,r un over the range $\{1,2,\ldots,2n\}$, and let g_{ji} , F^h_{i} , $\{j^h_{i}\}$, ∇_i , K^h_{kji} , K_{ji} , and K be the Hermition metric tensor, the complex structure tensor, the Christoffel symbols formed with g_{ji} , the operator of covariant differentiation with respect to $\{j^h_{i}\}$, the curvature tensor, the Ricci tensor and scalar curvature of M respectively.

An Admitted ... Us Negi

A vector field v^h is called a holomorphically projective (so called H-projective) vector field Ishihara⁵, Yano⁶, if it satisfies

$$(1.1) \mathcal{L}_{v}\{_{j}^{h}\} = \nabla_{j} \nabla_{i} v^{h} + v^{k} K_{kji}^{h} = \rho_{j} \delta_{i}^{h} + \rho_{i} \delta_{j}^{h} - \rho_{s} F_{j}^{s} F_{i}^{h} - \rho_{s} F_{i}^{s} F_{j}^{h}$$

For a certain covariant vector field ρ_j on M called the associated covariant vector field of v^h , where \mathcal{L}_v denotes the operator of Lie-derivative with respect to v^h . In particular, if ρ_j is the zero-vector field, then v^h is called an affine vector field. Also, if we refer in the sequel to an H-projective vector field v^h , then we always mean by ρ_j the associated covariant vector field taking in (1.1).

Now, Let M be a Kaehlerian space of complex dimension n. The complex structure tensor F_i^h and the Hermitian metric tensor structure g_{ii} satisfy

$$(1.2) F_i^h F_i^i = -\delta_i^h, \nabla_i F_i^h = 0, \nabla_i F_{ih} = 0,$$

$$(1.3) F_i^s g_{si} = -F_i^s g_{js}$$

$$(1.4) g_{ji} = -F_j^t F_i^s g_{ts}$$

We have Yano (1965), for the curvature tensor K_{kji}^h ,

$$(1.5) F_s^h K_{kii}^s = F_i^s K_{kis}^h$$

Or equivalently

$$(1.6) K_{kji}^h = - F_i^t F_s^h K_{kjt}^s$$

$$(1.7) F_h^s K_{kjis} = - F_i^s K_{kjsh}$$

(1.8)
$$K_{kjih} = F_i^t F_h^s K_{kjts}, \text{ where } K_{kjih} = K_{kji}^t g_{th}$$

Using (1.5) and the identity $K_{kii}^h + K_{iki}^h + K_{iik}^h = 0$,

We obtain

$$F_s^h K_i^s = g^{ut} F_s^h K_{iut}^s = F^{ts} K_{its}^h = \frac{1}{2} F^{ts} \left(K_{its}^h - K_{ist}^h \right) = -\frac{1}{2} F^{ts} K_{tsi}^h$$

Where g^{ji} are contravariant components of g_{ji} and $F^{ts} = g^{ti}F_i^s$, that is,

(1.9)
$$F_s^h K_i^s = -\frac{1}{2} F^{kj} K_{kji}^h,$$

From which it follows that

(1.10)
$$F_i^s K_{hs} = -\frac{1}{2} F^{kj} K_{kjih}.$$

For the Ricci tensor K_{ii} (1.9) we have

$$(1.11) F_i^{S} K_S^h = F_S^h K_i^{S}$$

or equivalently

$$(1.12) K_i^h = -F_i^t F_s^h K_t^s$$

Similarly, from (1.10) we have

An Admitted ... Us Negi.

$$(1.13) F_i^s K_{si} = -F_i^s K_{is}$$

or equivalently

$$(1.14) K_{ji} = F_i^t F_i^s K_{ts}$$

A vector field u^h on M is said to be contravariant analytic if

$$(1.15) F_i^s \nabla_s u_i = -F_i^s \nabla_i u_s$$

or equivalently

$$(1.16) \nabla_j u_i = F_i^t F_i^s \nabla_t u_s,$$

Where $u_i = g_{ih}u^h$, Since

$$\mathcal{L}_{v}F_{i}^{h} = -F_{i}^{s} \nabla_{s}u^{h} + F_{s}^{h} \nabla_{i}u^{s} = -(F_{i}^{t} \nabla_{t}u_{s} + F_{s}^{t} \nabla_{i}u_{t}) g^{sh},$$

a vector field u^h on M is contravariant analytic if and only if

$$(1.17) \mathcal{L}_{v}F_{i}^{h} = 0$$

Holds, where \mathcal{L}_{v} denotes the operator of Lie derivation with respect to u^{h} .

It is known Yano (1965) that if M is compact, then a necessary and sufficient condition for a vector field u^h and M to be contravariant analytic is that

$$\nabla^j \nabla_j u^h + K_i^h u^i = 0$$

Holds, where $\nabla^j = g^{ji} \nabla_i$.

For an H-projective vector field v^h on M defined by (1.1), we have

$$\nabla_{j}\nabla_{s}v^{s} = 2(n+1)\rho_{j},$$

$$\nabla^j \nabla_i v^h + K_i^h v^i = 0$$

(1.19) shows that the associated covariant vector field ρ_i is gradient. Putting

$$\rho = \frac{1}{2(n+1)} \nabla_s v^s$$

We have

$$(1.22) \rho_j = \nabla_j \ \rho.$$

If an H- projective vector field v^h on M is contravariant analytic, then substituting (1.1) in the well-known formula Yano (1965, 1970)

$$\mathcal{L}_{v} K_{kji}^{h} = \nabla_{k} \mathcal{L}_{v} \{_{j}^{h}_{i} \} - \nabla_{j} \mathcal{L}_{v} \{_{k}^{h}_{i} \}$$

And using a straightforward computation we find

$$(1.23) \mathcal{L}_{v} K_{kji}^{h} = -\delta_{k}^{h} \nabla_{j} \rho_{i} + \delta_{j}^{h} \nabla_{k} \rho_{i} + (F_{k}^{h} \nabla_{j} \rho_{s} - F_{j}^{h} \nabla_{k} \rho_{s}) F_{i}^{s} + (F_{k}^{s} \nabla_{j} \rho_{s} - F_{j}^{s} \nabla_{k} \rho_{s}) F_{i}^{h},$$

From which by contracting with respect to \mathbf{h} and \mathbf{k} , we obtain

An Admitted ... Us Negi

$$(1.24) \mathcal{L}_{v}K_{ii} = -2n\nabla_{i}\rho_{i} - 2F_{i}^{t}F_{i}^{s}\nabla_{t}\rho_{s}.$$

Obata² has defined and studied let M be a complete connected and simply connected Kaehlerian manifold. In order for M to admit a nontrivial solution φ of a system of Partial differential equations

$$\nabla_{j}\nabla_{i}\varphi_{h} + \frac{c}{4}\left(2\varphi_{j}g_{ih} + \varphi_{i}g_{jh} + \varphi_{h}g_{ji} - F_{ji}F_{h}^{s}\varphi_{s} - F_{jh}F_{i}^{s}\varphi_{s}\right) = 0$$

With a constant c>0, where $\varphi_h = \nabla_h \varphi$ and $F_{ji} = F_j^t g_{ti}$, it is necessary and sufficient that M be isometric to a complex projective space CPⁿ with Fubini-Study metric and of constant holomorphic sectional curvature \mathbf{c} .

2. KAEHLERIAN SPACES WITH CONSTANT SCALAR

CURVATURE

A Kaehlerian space M has the constant holomorphic sectional curvature k if and only if

(2.1)
$$K_{kji}^{h} = \frac{k}{4} (\delta_{k}^{h} g_{ji} - \delta_{j}^{h} g_{ki} + F_{k}^{h} F_{ji} - F_{j}^{h} F_{ki} - 2F_{kj} F_{i}^{h})$$

We define tensor fields G_{ji} and Z_{kji}^h on M by

$$(2.2) G_{ji} = K_{ji} - \frac{k}{2n} g_{ji}$$

$$(2.3) Z_{kji}^h = K_{kji}^h - \frac{k}{4n(n+1)} \left(\delta_k^h g_{ji} - \delta_j^h g_{ki} + F_k^h F_{ji} - F_j^h F_{ki} - 2F_{kj} F_i^h \right)$$

Respectively. We then easily see that the tensor fields G_{ji} and Z_{kji}^h satisfy

(2.4)
$$G_{ji} = G_{ij}, G_{ji} g^{ji} = 0, Z_{tii}^t = G_{ji},$$

$$(2.5) Z_{kjih} = -Z_{jkih}, Z_{kjih} = Z_{ihkj},$$

$$(2.6) Z_{kii}^h + Z_{iki}^h + Z_{iik}^h = 0,$$

Where $Z_{kjih} = Z_{kji}^t g_{th}$. If $G_{ji} = 0$, then M is a Kaehler-Einstein space and K is a constant provided n > 1, if $Z_{kji}^h = 0$, then M is of constant holomorphic sectional curvature K/n(n+1) provided n > 1.

Now, we have the following

Theorem (2.1): If an H-projective vector field v^h on a Kaehlerian space M of complex dimension n > 1 is contravariant analytic, then the associated vector field ρ^h is also contravariant analytic, and

(2.7)
$$\mathcal{L}_{v}K_{ji} = -2(n+1)\nabla_{j}\rho_{i},$$

Where $\rho^h = \rho_i g^{ih}$.

Proof: Applying the operator ρ_v of Lie derivation with respect to v^h to both sides of (1.14) and using $\mathcal{L}_v F_i^h = 0$, we have

$$\mathcal{L}_{v} K_{ji} = F_{j}^{t} F_{i}^{s} \mathcal{L}_{v} K_{ts},$$

An Admitted ... Us Negi.

From which together with (1.24) we see that ρ^h is contravariant analytic and (2.7) holds. Then, we have

Theorem (2.2): If a Kaehlerian space M is compact, then an H-projective vector field v^h on M is contravariant analytic, and consequently $\mathcal{L}_v F_i^h = 0$, Moreover, if n > 1, then the associated vector field ρ^h is contravariant analytic.

Theorem (2.3): For a contravariant analytic H-projective vector field v^h on a Kaehlerian space M with constant scalar K of complex dimension n > 1, we have

$$(2.8) \mathcal{L}_{v}G_{ii} = -\nabla_{i}w_{i} - \nabla_{i}w_{i},$$

Where we have put

(2.9)
$$w^h = (n+1)\rho^h + \frac{K}{2n} v^h,$$

And $w_i = g_{ih} w^h$

Proof: This follows from (2.2), (2.7) and the fact that ρ_i is gradient, that is $\rho_i = \nabla_i \rho$.

Theorem (2.4): For an H-projective vector field v^h on a compact Kaehlerian space M, we have

For any real function f on M, where dV denotes the volume element of M, and ρ is the function defined by (1.21).

Proof: This follows from (1.21) and

$$0 = \int_{M} \nabla_{i}(fv^{i}) dV = \int_{M} f \nabla_{i} v^{i} dV + \int_{M} v^{i} \nabla_{i} f dV.$$

Theorem (2.5): In a compact Kaehlerian space M, we have

$$(2.11) \qquad \int_{M} \mathcal{L}_{Df} h \, dV = \int_{M} \mathcal{L}_{Dh} f \, dV = \int_{M} (\nabla_{i} f) (\nabla^{i} h) dV = f \Delta h \, dV = -\int_{M} h \Delta f dV$$

For any real functions f and h on M, where \mathcal{L}_{Df} denotes the operator of Lie derivation with respect to the vector field $\nabla^i f$, and $\Delta = g^{ji} \nabla_i \nabla_i$.

Proof: This follows from

$$0 = \int_{M} \nabla_{i} (f \nabla^{i} h) dV = \int_{M} (\nabla_{i} f) (\nabla^{i} h) dV = \int_{M} f \Delta h dV,$$

$$0 = \int_{M} \nabla_{i} (h \nabla^{i} f) dV = \int_{M} (\nabla_{i} h) (\nabla^{i} f) dV = \int_{M} h \Delta f dV.$$

Theorem (2.6): If, in a compact Kaehlerian space M, a nonconstant function φ satisfies

$$(2.12) \qquad \nabla_j \nabla_i \varphi_h + \frac{c}{2} \left(2 \varphi_j g_{ih} + \varphi_i g_{jh} + \varphi_h g_{ji} - F_{ji} F_h^s \varphi_s - F_{jh} F_i^s \varphi_s \right) = 0.$$

Where $\varphi_h = \nabla_h \varphi$, c being a real constant, then the constant c is necessarily positive.

Proof: Transvecting (2.12) with g^{ih} , we have

$$\nabla_i \Delta \varphi + (n+1)c \varphi_i = 0$$

From which and Theorem (2.5) it follows that

An Admitted ... Us Negi

$$c \int_{M} \varphi_{j} \varphi^{j} dV = -\frac{1}{n+1} \int_{M} (\nabla_{j} \Delta \varphi) \varphi^{j} dV = \frac{1}{n+1} \int_{M} (\Delta \varphi)^{2} dV$$

Where $\varphi^j = g^{ij}\varphi_i$. Since φ is a nonconstant function, two inequalities

$$\int_{M} \varphi_{i} \varphi^{j} dV > 0, \quad \int_{M} (\Delta \varphi)^{2} dV > 0.$$

Hold, and consequently C is necessarily positive.

Theorem (2.7): If a Kaehlerian space M with constant scalar curvature K admits an H-projective vector field v^h , and the vector field w^h

Defined by (2.9) is a Killing vector field, then the associated covariant vector field ρ_i satisfies

$$(2.13) \quad \nabla_{j} \nabla_{i} \rho_{h} + \frac{k}{4n(n+1)} \left(2\rho_{j} g_{ih} + \rho_{i} g_{jh} + \rho_{h} g_{ji} - F_{ji} F_{h}^{s} \rho_{s} - F_{jh} F_{i}^{s} \rho_{s} \right) = 0$$

Moreover, if M is complete and simply connected, K is positive and v^h is non-affine, then M is isometric to a complex projective space CPⁿ with Fubini-Study metric of constant holomorphic sectional curvature k/n(n+1).

Proof: By using (1.1), we have

$$(2.14) \qquad \nabla_i (\nabla_i v_h + \nabla_h v_i) = 2\rho_i g_{ih} + \rho_i g_{jh} + \rho_h g_{ji} - F_{ii} F_h^s \rho_s - F_{jh} F_i^s \rho_s$$

If w^h is a Killing vector field, then

$$\nabla_i w_h + \nabla_h w_i = 0$$
,

Holds, and consequently

$$2(n+1)\nabla_i\rho_h + \frac{k}{2n}\left(\nabla_i\nu_h + \nabla_h\nu_i\right) = 0,$$

Which together with (2.14) implies (2.13). The second part of the lemma proved, if M is compact, then we can remove the positiveness of the scalar curvature K.

Theorem (2.8): For an H-projective vector field v^h on M is a compact Kaehlerian space of complex dimension n > 1 with constant scalar curvature K, we have

$$(2.15) \qquad \int_{M} (\nabla_{j} w_{i} + \nabla_{i} w_{j}) (\nabla^{j} w^{i} + \nabla^{i} w^{j}) dV = 2 \int_{M} (\nabla_{t} w^{t})^{2} dV$$

Proof: By using a well-known integral formula YanoA^{6,7} on a compact orientable Riemannian space, we have

$$\begin{split} \int_{M} \left(\nabla^{j} \nabla_{j} w^{h} + K_{i}^{h} w^{i} \right) w_{h} dV - \int_{M} \left(\nabla_{t} w^{t} \right)^{2} dV \\ + \frac{1}{2} \int_{M} \left(\nabla_{j} w_{i} + \nabla_{i} w_{j} \right) \left(\nabla^{j} w^{i} + \nabla^{i} w^{j} \right) dV = 0 \end{split}$$

On the other hand, by Theorem (2.2) the associated vector field ρ^h is contravariant analytic and hence satisfies

$$\nabla^{\mathsf{j}}\nabla_{\mathsf{j}}\rho^h + K_i^h\rho^i = 0.$$

Consequently (2.15) follows immediately from (1.20) and the above relations since K is a constant.

Theorem (2.9): For an H-projective vector field v^h on M, we have

An Admitted ... Us Negi.

(2.16)
$$\int_{M} G_{ji} \rho^{j} w^{i} dV$$

$$= \frac{1}{4(n+1)} \int_{M} (\nabla_{j} w_{i} + \nabla_{i} w_{j}) (\nabla^{j} w^{i} + \nabla^{i} w^{j}) dV.$$

Proof: From Theorem (2.2), the associated vector field ρ^h is contravariant analytic and hence satisfies

$$\nabla^{j}\nabla_{i}\rho^{i}+K_{i}^{i}\rho^{j}=0,$$

From which and the equality

$$\nabla_i \nabla_t \rho^t = \nabla^t \nabla_t \rho_i - K_{ii} \rho^j$$

We fined

$$\nabla_{\mathbf{i}}\nabla_{\mathbf{t}}\,\rho^{\mathbf{t}} = -2\,K_{ji}\,\rho^{j}.$$

Using the above equation (1.19),(2.2),(2.9) and Theorem(2.8), we have

$$\int_{M} G_{ji} \rho^{j} w^{i} dV = -\frac{1}{2} \int_{M} (\nabla_{i} \nabla_{t} \rho^{t}) w^{i} dV
-\frac{k}{4n(n+1)} \int_{M} (\nabla_{i} \nabla_{t} v^{t}) w^{i} dV
= -\frac{1}{2(n+1)} \int_{M} (\nabla_{i} \nabla_{t} w^{t}) w^{i} dV
= \frac{1}{2(n+1)} \int_{M} (\nabla_{t} w^{t})^{2} dV
= \frac{1}{4(n+1)} \int_{M} (\nabla_{j} w_{i} + \nabla_{i} w_{j}) (\nabla^{j} w^{i} + \nabla^{i} w^{j}) dV.$$

3. COMPLEX PROJECTIVE SPACE

We have the following

Theorem (3.1): A complete simply connected Kaehlerian space M of complex dimension n > 1 with positive constant scalar curvature K admits a nonaffine and contravariant analytic H-projective vector field v^h such that

$$(3.1) \mathcal{L}_{v}G_{ji} = 0,$$

If and only if M is a isometric to a complex projective space \mathbb{CP}^n with Fubini-Study metric and of constant holomorphic sectional curvature k/n(n+1).

Proof: This follows from Theorem (2.3) and (2.7).

Theorem (3.2): A complete simply connected Kaehlerian space M of complex dimension n > 1 with positive constant scalar curvature K admits a nonaffine and contravariant analytic H-projective vector field v^h such that

$$(3.2) \mathcal{L}_{v} Z_{kji}^{h} = 0,$$

An Admitted ... Us Negi

If and only if M is a isometric to a complex projective space $\mathbb{C}P^n$ with Fubini-Study metric and of constant holomorphic sectional curvature k/n(n+1).

Proof: If (3.2) holds, then we have $\nabla_t w^t = 0$ and hence w^h

Is a Killing vector field. Consequently the theorem follows from theorem (2.7)

Theorem (3.3): A compact Kaehlerian space M of complex dimension n > 1 with constant scalar curvature K admits an H-projective vector field v^h . We have

$$(3.3) \qquad \int_{M} G_{ji} \rho^{j} w^{i} dV \ge 0,$$

Where w^i is defined by (2.9). Assume moreover that M is simply connected and v^h is nonaffine, then the equality in (3.3) holds if and only if M is isometric to a complex projective space $\mathbb{C}P^n$ with Fubini-Study metric and of constant holomorphic sectional curvature k/n(n+1).

Proof: This follows from Theorem (2.7) and (2.9).

REFERENCES

- 1. S.Ishihara, Holomorphically projective changes and their groups in an almost complex manifold. Tohoku Math. j. 1959, 9, 273-297.
- 2. M.Obata, Riemannian manifolds admitting a solution of a certain system of differential equations. Proc. U. S.-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, 101-114.
- 3. U.S.Negi, and Gairola Kailash, On H-Projective transformations in almost Kaehlerian spaces, *Asian Journal of Current Engineering and Maths*, 2012, **1**:3, 162–165.
- 4. U.S.Negi, and Gairola Kailash; Admitting a conformal transformation group on Kaehlerian recurrent spaces, Internationa Journal of Mathematical Archive, 2012, 3(4), 1584-1589.
- 5. S.Ishihara, On holomorphic planes. *Ann.Math.Pura Appl.*, 1959, 47,197-241.
- 6. K.Yano, Differential Geometry on complex and almost complex spaces. Pergamon Press, Oxford.1965.
- 7. K. Yano, Integral formulas in Riemannian geometry. Marcel Dekker, New York, 1970.

Corresponding Author U.S. Negi;

Department of Mathematics, H.N.B. Garhwal (Central) University, Campus Badshahi Thaul, Tehri Garhwal – 249 199, Uttarakhand, India