Journal of Chemical, Biological and Physical Sciences

An International Peer Review E-3 Journal of Sciences
Available online atwww.jebsc.org

Section B: Physical Sciences

An Admitting H-Projective Vector Field in Kaehlerian Spaces with Constant Scalar Curvature

U.S. Negi
Department of Mathematics,H.N.B. Garhwal (Central) University, Campus Badshahi Thaul, Tehri Garhwal - 249 199, Uttarakhand, India.

Received: 03 August 2014; Revised: 20 August 2014; Accepted: 27 August 2014

Abstract

Ishihara ${ }^{1}$ has studied holomorphically projective changes and their groups in a almost complex manifold and also proved on holomorphic planes. Obata ${ }^{2}$ has defined and studied Riemannian manifolds admitting a solution of a certain system of differential equations. Also, Negi and Gairola ${ }^{3,4}$ have explain an admitting a conformal transformation group on Kaehlerian recurrent spaces. In this paper, I have defined and studied an admitting H-projective vector field in Kaehlerian spaces with constant scalar curvature and several theorems have been proved. Also, then find necessary and sufficient conditions for such a Kaehlerian space to be isometric to a complex projective space with Fubini-Study metric.

Keywords: Almost Hermition spaces, Kaehlerian spaces, H-projective vector field, associated covariant vector field, Fubini-Study metric.

MSC 2010: 53C15, 53C50, 53C55, 53C80, 53B35.

INTRODUCTION

Let M be a connected Kaehlerian spaces of complex dimension \mathbf{n} covered by a system of real coordinate neighborhood ($\mathrm{U} ; x^{h}$), where, here and in the sequel the indices h,i,j,k,.....,run over the range $\{1,2, \ldots \ldots, 2 \mathrm{n}\}$, and let $\mathrm{g}_{\mathrm{ji}}, \mathrm{F}_{\mathrm{i}}^{\mathrm{h}}\left\{_{\mathrm{j}}{ }_{\mathrm{i}}^{\mathrm{h}}\right\}, \nabla_{\mathrm{i}}, \mathrm{K}^{\mathrm{h}}{ }_{\mathrm{kji}}, \mathrm{K}_{\mathrm{ji}}$, and K be the Hermition metric tensor, the complex structure tensor, the Christoffel symbols formed with g_{ji}, the operator of covariant differentiation with respect to $\left\{{ }_{j}{ }^{{ }^{h}}{ }_{i}\right\}$, the curvature tensor, the Ricci tensor and scalar curvature of M respectively.

A vector field v^{h} is called a holomorphically projective (so called H-projective) vector field Ishihara ${ }^{5}$, Yano ${ }^{6}$, if it satisfies

$$
\begin{equation*}
\mathcal{L}_{v}\left\{\left\{_{\mathrm{j}}{ }_{\mathrm{i}}\right\}=\nabla_{j} \nabla_{i} v^{h}+v^{k} K_{k j i}^{h}=\rho_{j} \delta_{i}^{h}+\rho_{i} \delta_{j}^{h}-\rho_{s} F_{J}^{s} F_{i}^{h}-\rho_{s} F_{i}^{s} F_{J}^{h}\right. \tag{1.1}
\end{equation*}
$$

For a certain covariant vector field ρ_{j} on M called the associated covariant vector field of v^{h}, where \mathcal{L}_{v} denotes the operator of Lie- derivative with respect to v^{h}. In particular, if ρ_{j} is the zero-vector field, then v^{h} is called an affine vector field. Also, if we refer in the sequel to an H -projective vector field v^{h}, then we always mean by ρ_{j} the associated covariant vector field taking in (1.1).

Now, Let M be a Kaehlerian space of complex dimension n. The complex structure tensor F_{i}^{h} and the Hermitian metric tensor structure g_{ji} satisfy

$$
\begin{align*}
& F_{i}^{h} F_{j}^{i}=-\delta_{j}^{h}, \quad \nabla_{j} F_{i}^{h}=0, \nabla_{j} F_{i h}=0, \tag{1.2}\\
& F_{j}^{s} g_{s i}=-F_{i}^{s} g_{j s} \tag{1.3}\\
& g_{j i}=-F_{j}^{t} F_{i}^{s} g_{t s} \tag{1.4}
\end{align*}
$$

We have Yano (1965), for the curvature tensor $K_{k j i}^{h}$,

$$
\begin{equation*}
F_{s}^{h} K_{k j i}^{s}=F_{i}^{s} K_{k j s}^{h} \tag{1.5}
\end{equation*}
$$

Or equivalently

$$
\begin{align*}
& K_{k j i}^{h}=-F_{i}^{t} F_{s}^{h} K_{k j t}^{s} \tag{1.6}\\
& F_{h}^{s} K_{k j i s}=-F_{i}^{s} K_{k j s h} \tag{1.7}\\
& K_{k j i h}=F_{i}^{t} F_{h}^{s} K_{k j t s}, \quad \text { where } K_{k j i h}=K_{k j i}^{t} g_{t h} \tag{1.8}
\end{align*}
$$

Using (1.5) and the identity $K_{k j i}^{h}+K_{i k j}^{h}+K_{j i k}^{h}=0$,
We obtain

$$
F_{s}^{h} K_{i}^{s}=g^{u t} F_{s}^{h} K_{\text {iut }}^{s}=F^{t s} K_{i t s}^{h}=\frac{1}{2} F^{t s}\left(K_{i t s}^{h}-K_{i s t}^{h}\right)=-\frac{1}{2} F^{t s} K_{t s i}^{h}
$$

Where $g^{j i}$ are contravariant components of $g_{j i}$ and $F^{t s}=g^{t i} F_{i}^{s}$, that is,

$$
\begin{equation*}
F_{s}^{h} K_{i}^{s}=-\frac{1}{2} F^{k j} K_{k j i}^{h} \tag{1.9}
\end{equation*}
$$

From which it follows that

$$
\begin{equation*}
F_{i}^{s} K_{h s}=-\frac{1}{2} F^{k j} K_{k j i h} . \tag{1.10}
\end{equation*}
$$

For the Ricci tensor K_{ji}, (1.9) we have

$$
\begin{equation*}
F_{i}^{s} K_{s}^{h}=F_{s}^{h} K_{i}^{S} \tag{1.11}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
K_{i}^{h}=-F_{i}^{t} F_{s}^{h} K_{t}^{s} \tag{1.12}
\end{equation*}
$$

Similarly, from (1.10) we have

$$
\begin{equation*}
F_{j}^{s} K_{s i}=-F_{i}^{s} K_{j s} \tag{1.13}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
K_{j i}=F_{j}^{t} F_{i}^{s} K_{t s} \tag{1.14}
\end{equation*}
$$

A vector field u^{h} on M is said to be contravariant analytic if

$$
\begin{equation*}
F_{j}^{s} \nabla_{s} u_{i}=-F_{i}^{s} \nabla_{j} u_{s} \tag{1.15}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\nabla_{j} u_{i}=F_{j}^{t} F_{i}^{s} \nabla_{t} u_{s} \tag{1.16}
\end{equation*}
$$

Where $\quad u_{i}=g_{i h} u^{h}$, Since

$$
\mathcal{L}_{v} F_{i}^{h}=-F_{i}^{s} \nabla_{s} u^{h}+F_{s}^{h} \nabla_{i} u^{s}=-\left(F_{i}^{t} \nabla_{t} u_{s}+F_{s}^{t} \nabla_{i} u_{t}\right) g^{s h},
$$

a vector field u^{h} on M is contravariant analytic if and only if

$$
\begin{equation*}
\mathcal{L}_{v} F_{i}^{h}=0 \tag{1.17}
\end{equation*}
$$

Holds, where \mathcal{L}_{v} denotes the operator of Lie derivation with respect to u^{h}.
It is known Yano (1965) that if M is compact, then a necessary and sufficient condition for a vector field u^{h} and M to be contravariant analytic is that

$$
\begin{equation*}
\nabla^{j} \nabla_{j} u^{h}+K_{i}^{h} u^{i}=0 \tag{1.18}
\end{equation*}
$$

Holds, where $\nabla^{j}=g^{j i} \nabla_{i}$.
For an H-projective vector field v^{h} on M defined by (1.1), we have

$$
\begin{align*}
& \nabla_{j} \nabla_{s} v^{s}=2(\mathrm{n}+1) \rho_{j}, \tag{1.19}\\
& \nabla^{j} \nabla_{j} v^{h}+K_{i}^{h} v^{i}=0 \tag{1.20}
\end{align*}
$$

(1.19) shows that the associated covariant vector field ρ_{j} is gradient. Putting

$$
\begin{equation*}
\rho=\frac{1}{2(n+1)} \nabla_{s} v^{s} \tag{1.21}
\end{equation*}
$$

We have

$$
\begin{equation*}
\rho_{j}=\nabla_{j} \rho . \tag{1.22}
\end{equation*}
$$

If an H - projective vector field v^{h} on M is contravariant analytic, then substituting (1.1) in the wellknown formula $\operatorname{Yano}(1965,1970)$

$$
\mathcal{L}_{v} K_{k j i}^{h}=\nabla_{k} \mathcal{L}_{v}\left\{{ }_{\mathrm{j}}{ }^{\mathrm{h}}{ }_{\mathrm{i}}\right\}-\nabla_{j} \mathcal{L}_{v}\left\{{ }_{\mathrm{k}}{ }_{\mathrm{h}}^{\mathrm{i}}\right\}
$$

And using a straightforward computation we find

$$
\begin{align*}
\mathcal{L}_{v} K_{k j i}^{h}= & -\delta_{k}^{h} \nabla_{j} \rho_{i}+\delta_{j}^{h} \nabla_{k} \rho_{i}+\left(F_{k}^{h} \nabla_{j} \rho_{s}-F_{j}^{h} \nabla_{k} \rho_{s}\right) F_{i}^{s} \tag{1.23}\\
& +\left(F_{k}^{s} \nabla_{j} \rho_{s}-F_{j}^{s} \nabla_{k} \rho_{s}\right) F_{i}^{h},
\end{align*}
$$

From which by contracting with respect to \mathbf{h} and \mathbf{k}, we obtain

$$
\begin{equation*}
\mathcal{L}_{v} K_{j i}=-2 n \nabla_{j} \rho_{i}-2 F_{j}^{t} F_{i}^{s} \nabla_{t} \rho_{s} \tag{1.24}
\end{equation*}
$$

Obata ${ }^{2}$ has defined and studied let M be a complete connected and simply connected Kaehlerian manifold. In order for M to admit a nontrivial solution φ of a system of Partial differential equations

$$
\nabla_{j} \nabla_{i} \varphi_{h}+\frac{c}{4}\left(2 \varphi_{j} g_{i h}+\varphi_{i} g_{j h}+\varphi_{h} g_{j i}-F_{j i} F_{h}^{s} \varphi_{s}-F_{j h} F_{i}^{s} \varphi_{s}\right)=0
$$

With a constant $\mathrm{c}>0$, where $\varphi_{h}=\nabla_{h} \varphi$ and $F_{j i}=F_{j}^{t} g_{t i}$, it is necessary and sufficient that M be isometric to a complex projective space CP^{n} with Fubini-Study metric and of constant holomorphic sectional curvature \mathbf{c}.

2. KAEHLERIAN SPACES WITH CONSTANT SCALAR

CURVATURE

A Kaehlerian space M has the constant holomorphic sectional curvature k if and only if

$$
\begin{equation*}
K_{k j i}^{h}=\frac{k}{4}\left(\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}+F_{k}^{h} F_{j i}-F_{j}^{h} F_{k i}-2 F_{k j} F_{i}^{h}\right) \tag{2.1}
\end{equation*}
$$

We define tensor fields $G_{j i}$ and $Z_{k j i}^{h}$ on M by

$$
\begin{align*}
G_{j i} & =K_{j i}-\frac{k}{2 n} g_{j i} \tag{2.2}\\
Z_{k j i}^{h} & =K_{k j i}^{h}-\frac{k}{4 n(n+1)}\left(\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}+F_{k}^{h} F_{j i}-F_{j}^{h} F_{k i}-2 F_{k j} F_{i}^{h}\right) \tag{2.3}
\end{align*}
$$

Respectively. We then easily see that the tensor fields $G_{j i}$ and $Z_{k j i}^{h}$ satisfy

$$
\begin{align*}
& G_{j i}=G_{i j}, \quad G_{j i} g^{j i}=0, \quad Z_{t j i}^{t}=G_{j i}, \tag{2.4}\\
& Z_{k j i h}=-Z_{j k i h}, \quad Z_{k j i h}=Z_{i n k j}, \tag{2.5}\\
& Z_{k j i}^{h}+Z_{i k j}^{h}+Z_{j i k}^{h}=0, \tag{2.6}
\end{align*}
$$

Where $Z_{k j i h}=Z_{k j i}^{t} g_{t h}$. If $G_{j i}=0$, then M is a Kaehler-Einstein space and K is a constant provided $\mathrm{n}>1$, if $Z_{k j i}^{h}=0$, then M is of constant holomorphic sectional curvature $K / n(n+1)$ provided $\mathrm{n}>1$.

Now, we have the following
The orem (2.1): If an H-projective vector field v^{h} on a Kaehlerian space M of complex dimension $\mathrm{n}>1$ is contravariant analytic, then the associated vector field ρ^{h} is also contravariant analytic, and

$$
\begin{equation*}
\mathcal{L}_{v} K_{j i}=-2(n+1) \nabla_{j} \rho_{i}, \tag{2.7}
\end{equation*}
$$

Where $\rho^{h}=\rho_{i} g^{i h}$.
Proof: Applying the operator ρ_{v} of Lie derivation with respect to v^{h} to both sides of (1.14) and using $\mathcal{L}_{v} F_{i}^{h}=0$, we have

$$
\mathcal{L}_{v} K_{j i}=F_{j}^{t} F_{i}^{s} \mathcal{L}_{v} K_{t s}
$$

From which together with (1.24) we see that ρ^{h} is contravariant analytic and (2.7) holds. Then, we have
Theorem (2.2): If a Kaehlerian space M is compact, then an H -projective vector field v^{h} on M is contravariant analytic, and consequently $\mathcal{L}_{v} F_{i}^{h}=0$, Moreover, if $\mathrm{n}>1$, then the associated vector field ρ^{h} is contravariant analytic.

Theorem (2.3): For a contravariant analytic H-projective vector field v^{h} on a Kaehlerian space M with constant scalar K of complex dimension $\mathrm{n}>1$, we have

$$
\begin{equation*}
\mathcal{L}_{v} G_{j i}=-\nabla_{j} w_{i}-\nabla_{i} w_{j} \tag{2.8}
\end{equation*}
$$

Where we have put

$$
\begin{equation*}
w^{h}=(n+1) \rho^{h}+\frac{K}{2 n} v^{h}, \tag{2.9}
\end{equation*}
$$

And $w_{i}=g_{i n} w^{h}$
Proof: This follows from (2.2), (2.7) and the fact that ρ_{j} is gradient, that is $\rho_{j}=\nabla_{j} \rho$.
Theorem (2.4): For an H-projective vector field v^{h} on a compact Kaehlerian space M, we have

$$
\begin{equation*}
\int_{M} \rho f d V=-\frac{1}{2(n+1)} \int_{M} \mathcal{L}_{v} f d V \tag{2.10}
\end{equation*}
$$

For any real function f on M , where $d V$ denotes the volume element of M , and ρ is the function defined by (1.21).

Proof: This follows from (1.21) and

$$
0=\int_{M} \nabla_{i}\left(f v^{i}\right) d V=\int_{M} f \nabla_{i} v^{i} d V+\int_{M} v^{i} \nabla_{i} f d V
$$

The orem (2.5): In a compact Kaehlerian space M, we have

$$
\begin{equation*}
\int_{M} \mathcal{L}_{D f} h d V=\int_{M} \mathcal{L}_{D h} f d V=\int_{M}\left(\nabla_{i} f\right)\left(\nabla^{i} h\right) d V=f \Delta h d V=-\int_{M} h \Delta f d V \tag{2.11}
\end{equation*}
$$

For any real functions f and h on M , where $\mathcal{L}_{D f}$ denotes the operator of Lie derivation with respect to the vector to the vector field $\nabla^{i} f$, and $\Delta=g^{j i} \nabla_{j} \nabla_{i}$.

Proof: This follows from

$$
\begin{aligned}
& 0=\int_{M} \nabla_{i}\left(f \nabla^{i} h\right) d V=\int_{M}\left(\nabla_{i} f\right)\left(\nabla^{i} h\right) d V=\int_{M} f \Delta h d V, \\
& 0=\int_{M} \nabla_{i}\left(h \nabla^{i} f\right) d V=\int_{M}\left(\nabla_{i} h\right)\left(\nabla^{i} f\right) d V=\int_{M} h \Delta f d V .
\end{aligned}
$$

Theorem (2.6): If, in a compact Kaehlerian space M, a nonconstant function φ satisfies

$$
\begin{equation*}
\nabla_{j} \nabla_{i} \varphi_{h}+\frac{c}{2}\left(2 \varphi_{j} g_{i h}+\varphi_{i} g_{j h}+\varphi_{h} g_{j i}-F_{j i} F_{h}^{s} \varphi_{s}-F_{j h} F_{i}^{s} \varphi_{s}\right)=0 \tag{2.12}
\end{equation*}
$$

Where $\varphi_{h}=\nabla_{h} \varphi, \mathrm{c}$ being a real constant, then the constant c is necessarily positive.
Proof: Transvecting (2.12) with $g^{i h}$, we have

$$
\nabla_{j} \Delta \varphi+(n+1) c \varphi_{j}=0
$$

From which and Theorem (2.5) it follows that

$$
c \int_{M} \varphi_{j} \varphi^{j} d V=-\frac{1}{n+1} \int_{M}\left(\nabla_{j} \Delta \varphi\right) \varphi^{j} d V=\frac{1}{n+1} \int_{M}(\Delta \varphi)^{2} d V
$$

Where $\varphi^{j}=g^{i j} \varphi_{i}$. Since φ is a nonconstant function, two inequalities

$$
\int_{M} \varphi_{j} \varphi^{j} d V>0, \quad \int_{M}(\Delta \varphi)^{2} d V>0
$$

Hold, and consequently C is necessarily positive.
Theorem (2.7): If a Kaehlerian space M with constant scalar curvature K admits an H-projective vector field v^{h}, and the vector field w^{h}
Defined by (2.9) is a Killing vector field, then the associated covariant vector field ρ_{j} satisfies

$$
\begin{equation*}
\nabla_{j} \nabla_{i} \rho_{h}+\frac{k}{4 n(n+1)}\left(2 \rho_{j} g_{i h}+\rho_{i} g_{j h}+\rho_{h} g_{j i}-F_{j i} F_{h}^{s} \rho_{s}-F_{j h} F_{i}^{s} \rho_{s}\right)=0 \tag{2.13}
\end{equation*}
$$

Moreover, if M is complete and simply connected, K is positive and v^{h} is non-affine, then M is isometric to a complex projective space $C P^{n}$ with Fubini-Study metric of constant holomorphic sectional curvature $k / n(n+1)$.

Proof: By using (1.1), we have

$$
\begin{equation*}
\nabla_{j}\left(\nabla_{i} v_{h}+\nabla_{h} v_{i}\right)=2 \rho_{j} g_{i h}+\rho_{i} g_{j h}+\rho_{h} g_{j i}-F_{j i} F_{h}^{s} \rho_{s}-F_{j h} F_{i}^{s} \rho_{s} \tag{2.14}
\end{equation*}
$$

If w^{h} is a Killing vector field, then

$$
\nabla_{i} w_{h}+\nabla_{h} w_{i}=0,
$$

Holds, and consequently

$$
2(n+1) \nabla_{i} \rho_{h}+\frac{k}{2 n}\left(\nabla_{i} v_{h}+\nabla_{h} v_{i}\right)=0,
$$

Which together with (2.14) implies (2.13). The second part of the lemma proved, if M is compact, then we can remove the positiveness of the scalar curvature K .

Theorem (2.8): For an H-projective vector field v^{h} on M is a compact Kaehlerian space of complex dimension $\mathrm{n}>1$ with constant scalar curvature K , we have

$$
\begin{equation*}
\int_{M}\left(\nabla_{j} w_{i}+\nabla_{i} w_{j}\right)\left(\nabla^{j} w^{i}+\nabla^{i} w^{j}\right) d V=2 \int_{M}\left(\nabla_{t} w^{t}\right)^{2} d V \tag{2.15}
\end{equation*}
$$

Proof: By using a well-known integral formula YanoA ${ }^{6,7}$ on a compact orientable Riemannian space, we have

$$
\begin{aligned}
& \int_{M}\left(\nabla^{j} \nabla_{j} w^{h}+K_{i}^{h} w^{i}\right) w_{h} d V-\int_{M}\left(\nabla_{t} w^{t}\right)^{2} d V \\
& \quad+\frac{1}{2} \int_{M}\left(\nabla_{j} w_{i}+\nabla_{i} w_{j}\right)\left(\nabla^{j} w^{i}+\nabla^{i} w^{j}\right) d V=0
\end{aligned}
$$

On the other hand, by Theorem (2.2) the associated vector field ρ^{h} is contravariant analytic and hence satisfies

$$
\nabla^{\mathrm{j}} \nabla_{j} \rho^{h}+K_{i}^{h} \rho^{i}=0 .
$$

Consequently (2.15) follows immediately from (1.20) and the above relations since K is a constant.
Theorem (2.9): For an H-projective vector field v^{h} on M, we have
J. Chem. Bio. Phy. Sci. Sec. C, Aug. 2014 - Oct. 2014; Vol.4, No.4; 3628-3635.

$$
\begin{align*}
& \int_{M} G_{j i} \rho^{j} w^{i} d V \tag{2.16}\\
& \qquad \quad=\frac{1}{4(n+1)} \int_{M}\left(\nabla_{j} w_{i}+\nabla_{i} w_{j}\right)\left(\nabla^{j} w^{i}+\nabla^{i} w^{j}\right) d V
\end{align*}
$$

Proof: From Theorem (2.2), the associated vector field ρ^{h} is contravariant analytic and hence satisfies

$$
\nabla^{\mathrm{j}} \nabla_{j} \rho^{i}+K_{j}^{i} \rho^{j}=0
$$

From which and the equality

$$
\nabla_{\mathrm{i}} \nabla_{\mathrm{t}} \rho^{\mathrm{t}}=\nabla^{\mathrm{t}} \nabla_{t} \rho_{i}-K_{j i} \rho^{j}
$$

We fined

$$
\nabla_{\mathrm{i}} \nabla_{\mathrm{t}} \rho^{\mathrm{t}}=-2 K_{j i} \rho^{j}
$$

Using the above equation (1.19),(2.2),(2.9) and Theorem(2.8), we have

$$
\begin{aligned}
\int_{M} G_{j i} \rho^{j} w^{i} d V= & -\frac{1}{2} \int_{M}\left(\nabla_{i} \nabla_{t} \rho^{t}\right) w^{i} d V \\
& \quad-\frac{k}{4 n(n+1)} \int_{M}\left(\nabla_{\mathrm{i}} \nabla_{\mathrm{t}} \mathrm{v}^{\mathrm{t}}\right) w^{i} d V \\
= & -\frac{1}{2(n+1)} \int_{M}\left(\nabla_{\mathrm{i}} \nabla_{\mathrm{t}} \mathrm{w}^{\mathrm{t}}\right) w^{i} d V \\
= & \frac{1}{2(n+1)} \int_{M}\left(\nabla_{t} w^{t}\right)^{2} d V \\
= & \frac{1}{4(n+1)} \int_{M}\left(\nabla_{j} w_{i}+\nabla_{i} w_{j}\right)\left(\nabla^{j} w^{i}+\nabla^{i} w^{j}\right) d V
\end{aligned}
$$

3. COMPLEX PROJECTIVE SPACE

We have the following
Theorem (3.1): A complete simply connected Kaehlerian space M of complex dimension $n>1$ with positive constant scalar curvature K admits a nonaffine and contravariant analytic H-projective vector field v^{h} such that

$$
\begin{equation*}
\mathcal{L}_{v} G_{j i}=0 \tag{3.1}
\end{equation*}
$$

If and only if M is a isometric to a complex projective space $C P^{n}$ with Fubini-Study metric and of constant holomorphic sectional curvature $k / n(n+1)$.

Proof: This follows from Theorem (2.3) and (2.7).
Theorem (3.2): A complete simply connected Kaehlerian space M of complex dimension $\mathrm{n}>1$ with positive constant scalar curvature K admits a nonaffine and contravariant analytic H-projective vector field v^{h} such that

$$
\begin{equation*}
\mathcal{L}_{v} Z_{k j i}^{h}=0 \tag{3.2}
\end{equation*}
$$

If and only if M is a isometric to a complex projective space $C P^{n}$ with Fubini-Study metric and of constant holomorphic sectional curvature $k / n(n+1)$.

Proof: If (3.2) holds, then we have $\nabla_{t} w^{t}=0$ and hence w^{h}
Is a Killing vector field. Consequently the theorem follows from theorem (2.7)
Theorem (3.3): A compact Kaehlerian space M of complex dimension $\mathrm{n}>1$ with constant scalar curvature K admits an H -projective vector field v^{h}. We have

$$
\begin{equation*}
\int_{M} G_{j i} \rho^{j} w^{i} d V \geq 0, \tag{3.3}
\end{equation*}
$$

Where w^{i} is defined by (2.9). Assume moreover that M is simply connected and v^{h} is nonaffine, then the equality in (3.3) holds if and only if M is isometric to a complex projective space $C P^{n}$ with FubiniStudy metric and of constant holomorphic sectional curvature $k / n(n+1)$.

Proof: This follows from Theorem (2.7) and (2.9).

REFERENCES

1. S.Ishihara, Holomorphically projective changes and their groups in an almost complex manifold. Tohoku Math.j. 1959, 9, 273- 297.
2. M.Obata, Riemannian manifolds admitting a solution of a certain system of differential equations. Proc. U. S.-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, 101-114.
3. U.S.Negi, and Gairola Kailash, On H-Projective transformations in almost Kaehlerian spaces, Asian Journal of Current Engineering and Maths, 2012, 1:3, 162-165.
4. U.S.Negi, and Gairola Kailash; Admitting a conformal transformation group on Kaehlerian recurrent spaces, Internationa Journal of Mathematical Archive, 2012, 3(4), 1584-1589.
5. S.Ishihara, On holomorphic planes. Ann.Math.Pura Appl., 1959, 47,197-241.
6. K.Yano, Differential Geometry on complex and almost complex spaces. Pergamon Press, Oxford. 1965.
7. K.Yano, Integral formulas in Riemannian geometry. MarcelDekker, New York,1970.

Corresponding Author U.S. Negi;

Department of Mathematics,H.N.B. Garhwal (Central) University, Campus Badshahi Thaul, Tehri Garhwal - 249 199, Uttarakhand, India

