
JCBPS; Section C; Nov. 2014 – Jan. 2015, Vol. 5, No. 1 ; 6435-664.                                                                                                       E- ISSN: 2249 –1929   

Journal of Chemical, Biological and Physical Sciences 
An International Peer Review E-3 Journal of Sciences 

Available online atwww.jcbsc.org 

Section C: Physical Sciences 

CODEN (USA): JCBPAT                                                                                                                                                   Research Article  
 

The Effect of Rotation on the Onset of Double Diffusive 
Convection in a Saturated Anisotropic Porous Layer with 

Internal Heat Source. 

S.N.Gaikwad * and Anuradha V Javaji 

Department of Mathematics, Gulbarga University, Jnana Ganga Campus, Gulbarga-
585106, Karnataka, India 

Received: 12 September 2014; Revised:  13 October 2014; Accepted: 07 November 2014 

Abstract: In the present study, the effect of rotation on the onset of convection in a 
saturated anisotropic porous layer with internal heat source is investigated analytically 
using linear and nonlinear theories. The linear theory is based on the normal mode 
technique and the nonlinear theory on the truncated Fourier series. The Brinkman model 
that includes the Coriolis term is employed for the momentum equation. The onset 
criterion for stationary, oscillatory and finite amplitude convection is derived analytically. 
The effect of internal Rayleigh number, Taylor number, Darcy-Prandtl number, Thermal 
and Mechanical anisotropic parameters, Lewis number, normalized porosity and solute 
Rayleigh number on stability of a system is shown graphically. The transient behavior of 
the Nusselt and Sherwood numbers is obtained by solving the finite amplitude equations 
using the Runge-Kutta method.  

Keywords: Double Diffusive Convection, Rotation, Brinkman model, Porous layer, 
Anisotropy, Internal Heat Source, Heat and Mass Transfer. 

INTRODUCTION 

The problem of convection induced by temperature and concentration gradients or by concentration 
gradients of two species, known as double diffusive convection, has attracted considerable interest in the 
last several decades. If gradients of two stratifying agencies having different diffusivities are 
simultaneously present in a fluid layer, a variety of interesting convective phenomena can occur that are 
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not possible in single component fluids. The double diffusive convection in porous media has also 
become important in recent years because of its many applications in geophysics, particularly in saline 
geothermal fields where hot brines remain beneath less saline, cooler ground waters. A comprehensive 
review of the literature concerning double diffusive convection in a binary fluid-saturated porous medium 
may be found in the book by Nield and Bejan1. Excellent review articles on double diffusive convection 
in porous media include those by Trevisan and Bejan2, Mojtabi and Charrier–Mojtabi3, 4 and Mamou5. 

Early studies on the phenomena of double diffusive convection in porous media are mainly concerned 
with problem of convective instability in a horizontal layer heated and salted from below. The previous 
studies have usually been concerned with homogeneous isotropic porous structures. However, during the 
last few years the effect of nonhomogeneity and anisotropy of porous medium has been studied. The 
geological and pedagogical processes rarely form isotropic medium as is usually assumed in transport 
studies. Processes such as sedimentation, compaction, frost action, and reorientation of the solid matrix 
are responsible for the creation of a naturally anisotropic porous medium. Anisotropy can also be a 
characteristic of manufactured porous media like those made of irregularly shaped particles formed by 
extrusion or pelleting used in chemical engineering process or fiber materials used for insulating 
purposes.  

Natural convection heat transfer induced by internal heat generation has recently received considerable 
attention because of numerous applications in geophysics and energy-related engineering problems. Such 
applications include heat removal from nuclear fuel debris, underground disposal of radioactive waste 
materials, storage of foodstuff, and exothermic chemical reactions in packed-bed reactor. Acharya and 
Goldstein6 studied numerically a complicated inclined cavity with inner heat generation. Mostly internal 
heating and (at least if one assumes whole mantle convection) with only the small bottom heating that 
arises from core cooling. As a consequence, plumes are a relatively unimportant part of the convecting 
system. Many authors have considered the conditions for instability in a porous layer heated either from 
below or by means of internal volumetric heat generation. Horton and Rogers7, and Lapwood8 were the 
first to establish analytically the critical Rayleigh number for the onset of convection in a fluid-saturated 
porous layer heated from below without internal heat generation. Their analysis has since been extended 
substantially to include other types of modeling of porous media, and to moderately and strongly 
nonlinear situations. The reviews by Rees9 and Tyvand10 may be consulted for further details. Stability 
and bifurcation were studied numerically for steady internal heating of a horizontal layer cooled from 
above and below by Marimbordes et al. 11 and for a vertical channel by Nagata and Generalis12. However, 
there are relatively very few studies available in which the effect of internal heating on convective flow 
has been investigated. Some of these studies are Herron13, Borujerdi et al. 14, Khalili et al. 15, Hill16, 
Mansour et al. 17, Cookey et al. 18, Kannan and Venkataraman19, Cookey and Omubo- Pepple20, and Khan 
and Aziz21. More recently Bhadauria 22 has investigated double-diffusive convection in a saturated 
anisotropic porous layer with an internal heat source by employing a generalized Darcy model for the 
momentum equation and extended work is seen in Bhadauria et al. 23 

Double diffusive convection occurs in many systems in industry and nature, and in the present context, is 
of particular interest in the study of extraction of metals from ores where a mushy layer is formed during 
solidification of a metallic alloy. Further, the quality and structure of the resulting solid can be controlled 
by influencing the transport process externally, which can be done by rotation or by internal heating. 
However in the present study, internal heating of the system was used as an external means to influence 
the transport process, thereby controlling the quality and structure of the resulting solid. Further, many of 
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the previous studies have modeled the mushy layer as isotropic porous medium, however in reality, the 
permeability of the porous medium is anisotropic as discussed above. 

 MATHEMATICAL FORMATION 

We consider an infinite horizontal anisotropic porous layer confined between the plates 0z =  and z d= , 
with vertically downward gravity g acting on it. A uniform adverse temperature gradient l uT T T∆ = −  

and a stabilizing concentration gradient ( )l u l u l uS S S T T and S S∆ = − > >  are maintained between the 
lower and upper surfaces. The porous layer rotates uniformly about the z -axis with a constant angular 
velocity ( )0,0,ΩΩ = .  A Cartesian frame of reference is chosen with origin in the lower boundary and 

z -axis vertically upwards. The interaction between heat and mass transfer known as the Soret and 
Dufour effects, is supposed to have no influence on the convective flow, so they are ignored. It is also 
assumed that the fluids and solid phase are in local thermal equilibrium. The Darcy –Brinkman model is 
employed for the momentum equation (see Zhang et al. 24). The velocities are assumed to be small so that 
the advective and Forchheimer inertia effected are ignored. The Boussinesq approximation, which states 
that the variation in density is negligible everywhere in the conservations except in the buoyancy term, is 
assumed to hold, with these assumptions the basic governing equations are 

. 0∇ =q ,                                                                                                                                                   (3.1)                        

0
1 2 .p

t
ρ ρ µ

ε ε
∂ + × = −∇ + − ∂ 
q Ω q g K q ,                                                                                        (3.2)        

( )2
0( . ) ,T

T T T Q T T
t

γ κ∂
+ ∇ = ∇ + −

∂
q

                                                                                                  
(3.3)       

2( . ) ( ),S
S S S
t

ε κ∂
+ ∇ = ∇

∂
q                                                                                                                     (3.4)                

0 0 0[1 ( ) ( )],T ST T S Sρ ρ β β= − − + −                                                                                                       (3.5)                      
where the variables and constants have their usual meaning as given in the nomenclature. Further, 

( )m( c)= , ( ) (1 )( )
( ) m S p f

p f

c c C
c
ργ ρ ε ρ ε ρ
ρ

= − + , pc is the specific heat of the fluid at 

constant pressure, c is the specific heat of the solid, the subscripts ,f s and  m denote fluid, solid and 
porous medium values respectively. 
 Basic State: The basic state is assumed to be quiescent and is given by 

( )0,0,0b =q , ( )b zρ ρ= , ( )bp p z= , ( )bT T z= , ( ).bS S z=                                     (3.6)               

The temperature ( )bT z , solute concentration ( )bS z , pressure ( )bp z and density ( )b zρ , satisfy the 
following equations 

b
b

dp
g

dz
ρ= − , ( )

22

02 20, 0b
T b

d Sd T Q T T
dz dz

κ + − = = ,                                                  (3.7)                         

0 0 0[1 ( ) ( )].b T b S bT T S Sρ ρ β β= − − + −                                                                                                   (3.8)   

Then the basic state temperature and concentration are given by                                                                                             
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( ) 0

0

1

,

1

b

b

zRi
dT z T Sin T

Sin Ri
zS S S
d

   −      = ∆ + 
 
   = ∆ − +                                                                                                    

(3.9) 

where 
2

T z

QdRi
κ

=  is the internal Rayleigh number. 

Perturbed State: Now superimpose the small perturbations at the basic state in the form 

,b ′= +q q q ( )bT T z T ′= + , ( )bS S z S′= + ,                                                  (3.10) 

( )bp p z p′= + ,   ( )b zρ ρ ρ′= + ,         

where the prime indicates that the quantities are infinitesimal perturbations. Substituting Eq. (3.10) into 
Eqs. (3.1)- (3.5) and using the basic state solutions, we obtain the equations governing the perturbations 
in the form 

'. 0,∇ =q                                                                                                                                                (3.11) 

0
1 ' 2 ' ' ' . ',p

t
ρ ρ µ

ε ε
∂ + × =−∇ + − ∂ 
q Ω q g K q

                                                                                
(3.12)  

( ) 2' '. ' ' ' ',T
T TT w T QT
t d

γ κ∂ ∆
+ ∇ − = ∇ +

∂
q

                                                                                     
(3.13) 

( ) ( )2' '. ' ' ' ,S
S SS w S
t d

ε κ∂ ∆
+ ∇ − = ∇

∂
q                                                                       (3.14) 

( )0' ' 'T ST Sρ ρ β β= − + .                                                                                                                        (3.15)            

by operating curl twice on equation (3.12), we eliminate p′ from it and then render the resulting equation 
and Eqs. (3.13) and (3.14) dimensionless using the following transformations  

( ) ( )
( ) ( )

2
* * * *

* *

', ', ' , , , ' , ( , , ) ( , , ),

, ' ,

Tz

Tz

dx y z d x y z t t u v w u v w
d

T T T S S S

γ κ
κ

∗ ∗ ∗ 
′ ′ ′= = = 

 
′= ∆ = ∆

                           (3.16) 

 to obtain non-dimensional equations as (after dropping the asterisks for simplicity) 

( )

2 2
2 2

2 2

2 2

1 1 1 1

1 1 ,

h
D D

T h S h
D

Ta w
Pr t z Pr t z

Ra T Ra S
Pr t

ξ ξ

ξ

   ∂ ∂ ∂ ∂
∇ +∇ + + + =    ∂ ∂ ∂ ∂   

 ∂
+ ∇ − ∇ ∂ 

                      (3.17)                         

( )
2

2
2 . 0h q Ri T w

t z
η

  ∂ ∂
− ∇ + + ∇ − − =    ∂ ∂  

 ,                                                                                    (3.18)         
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( )21 . 0q S w
t Le

φ ∂ − ∇ + ∇ − = ∂ 


,                                                                                                      (3.19) 

The dimensionless groups, that appear are 2Pr /D z Tzd Kγεν κ=  the Darcy-Prandtl number, 

( )22 /zTa KΩ εν= the Taylor number, /T T Tz TzRa g TdKβ νκ= ∆  the thermal Rayleigh number,  

/S S Tz TzRa g SdKβ νκ= ∆  the solute Rayleigh number, 2 / T zRi Qd κ= the Internal Rayleigh 

number,   /T sLe κ κ=   the Lewis number, /x zk kξ =  the mechanical anisotropy parameter, 

/Tx Tzη κ κ=  is the thermal anisotropy parameter, /φ ε γ=  normalized  porosity. Eqs. (3.17)-(3.19) are 
solved for stress free, isothermal and isosolutal boundary conditions. Hence the boundary conditions for 
the perturbation variables are given by 

2

2 0ww T S
z

∂
= = = =
∂

, at     0, 1z = .                                                                                                 (3.20) 

The stress-free boundary conditions are chosen for mathematical simplicity without qualitatively 
important physical effect being lost. The use of stress-free boundary condition is a useful mathematical 
simplification but is not physically sound. The correct boundary condition for a viscous binary fluid are to 
impose rigid rigid boundary condition but then the problem is not tractable analytically. 

LINEAR STABILITY ANALYSIS 

In this section we predict the thresholds of both marginal and oscillatory convections using linear theory. 
The Eigenvalue problem defined by Eqs. (3.17)- (3.19) subject to the boundary conditions (3.20) is solved 
using the time-dependent periodic disturbances in a horizontal plane. Assuming that amplitudes of the 
perturbation are very small we write 

( )
( )
( )

( )exp

W zw
T z i lx my t
S z

Θ σ

Φ

  
    = + +    
  

   

,                                                                                               (3.21) 

Where l and m are the wave numbers in the horizontal plane and σ  is the growth rate. Infinitesimal 
perturbations of the rest state may either damp or grow depending on the value of the parameterσ . 
Substituting Eq. (3.21) into Eqs. (3.17)- (3.19), we obtain   

( )

( )

2
2 2 2 2

2 2

1
Pr Pr

1 ,
Pr

D D

T S
D

DD a a TaD W

a Ra a Ra

σ σ
ξ ξ

σ Θ Φ
ξ

     
 − + − + + =            

 
+ − + 

                         

(3.22)          

( )2 2 0,D a Ri Wσ η Θ − − − − =
 

                                                                                                       (3.23)              

( )2 21 0,D a W
Le

φσ Φ − − − =                                                                                                           
(3.24)     

where /D d dz=  and  2 2 2a l m= + .  
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We assume the solution of Eqs. (3.22)- (3.24) satisfying the boundary conditions (3.20) in the form, 

( )
( )
( )

( )
0

0

0

sin , 1, 2,3........

W z W
z n z n

z

Θ Θ π
ΦΦ

   
   = =   
   

  

.                                                                                        (3.25) 

The most unstable mode corresponding to 1n =  (fundamental mode). Therefore, substituting Eq (3.25) 
with  1n =  into Eqs. (3.22)- (3.24), we obtain a matrix equation of the form  

2 2
11 0

2
2 0

2 0

0
1 0 0 ,

011 0

T SM a Ra a Ra W
Ri

Le

σ δ Θ
Φφσ δ

 
−    

    − + − =    
       − +

                                                                           

(3.26)  

Where ( ) 12 2 2 1 1
11 1 Pr ,

Pr D
D

M Taσ δ δ π σ ξ
−− −= + + + 2 2 2 2 2 1 2

1,a aδ π δ π ξ −= + = +  and 2 2 2
2 aδ π η= +  

 The conditions of non-trivial solutions of above system of homogenous linear equations (3.26) yields the 
expression for the thermal Rayleigh number in the form 

( )
22 2 2

22
12 1 21 1

.
Pr Pr

S
T

D D

a RaRi TaRa
a Le

σ δ σ δ πδ
φσ δσ ξ −− −

  + −  = + + +    ++                                              

(3.27)        

Marginal State 
For validity of the principle of exchange of stabilities (i.e. steady case), we have 0σ =  (i.e. 0r iσ σ= = ) 
at the margin of stability. Then the Rayleigh number at which marginally stable steady mode exists 
becomes 

( )
( )

2 22 2 2
2 2

2 2 2
.

Sst
T

a Ri Le Raa RiRa a Ta
a a

η πη π π π ξ
ξ π

+ −  + −
= + + +     +  

                                    

(3.28) 

The minimum value of the Rayleigh number st
TRa  occurs at the critical wave number .st

ca a=  
In the absence of a heat source for the porous medium (i.e. when Ri = 0) Eq. (3.28) reduces to, 

( )
( )

2 22 2 2
2 2

2 2 2
.

Sst
T

a Le RaaRa a Ta
a a

η πη π π π ξ
ξ π

+  +
= + + +     +  

                                                    

(3.29) 

This is exactly the one given by Malashetty and Heera25. When 0Ta → , i.e., in absence of rotation, Eq. 
(3.28) reduces to 

( ) ( )
( )

2 22
2 2 2

2 2 2
1 ,

Sst
T

a Le Ra
Ra a a

a a

η ππη π
ξ π

+ 
= + + +   + 

                                                                

(3.30) 

which is identical with Malashetty and Swamy 26. Further, for an isotropic porous medium, that is, when 
1ξ η= = , Eq. (3.28) gives 
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( )34 2

12 2
1

1
,st

T S
TaRa Le Ra

π α
η

α α η

+
= + +                                                                                          (3.31) 

Where ( )
214 2 2 2

1 4 2
1 , ,aDa aη π π α
π π

− 
= + + =  

 
which is the one obtained by Rudraiah et al. 27. 

Oscillatory State 
We now set iσ σ=  in Eq. (3.27) and clear the complex quantities from the denominator, to obtain  

1 2,T iRa i∆ σ ∆= +                                                                                                                                 (3.32)   

where 1∆ and 2∆  are given as  

( ) ( )( )
( )

( )( )
( )

( ) ( )( )
( )

( )( )
( )

2 2 22 2 2 2
21 2

1 2 2 2 2 2

2 2 1 2
2

22 1 2 2

2 22 2 2
21 2

2 2 2 2 2 2

2 1 2
2

22 1 2 2

Pr PrPr

Pr Pr

Pr PrPr

Pr Pr

D DD

D D

S

D DD

D D

S

Ta w Riw Ri

a a w

Ra w Le Ri

Le w

Ta RiRi

a a w

Ra Le Ri

Le w

π ξ ξ δδ δ δ
∆

ξ

φ δ δ

δ φ

π ξ ξ δδ δ δ
∆

ξ

δ φ δ

δ φ

−

−

−

−

+ −− + −
= + +

+

+ −

+

+ −+ −
= + +

+

− −

+

 

Since TRa  is a physical quantity, it must be real. Hence, from Eq. (3.32) it follows that either 0iσ =  

(steady onset) or ( )2 0 0i∆ σ= ≠  (oscillatory onset). 

For oscillatory onset ( )2 0 0i∆ σ= ≠  and this gives an expression for frequency of oscillations in the 

form (on dropping the subscript i  ) 

( ) ( )22 2
0 1 2 0,a a aσ σ+ + =

                                                                                                               
(3.33) 

Where the coefficients are given as 
2 2 2 2 2 2 2 2 2 2 2 2

0 1 2
2 2 2 6 2 4 2 2 6 2 2 2 2

1 1 2
2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2

2 1 2
2 2 3 2 2 2 2 2 2 2 2

Pr ;

Pr Pr Pr

Pr Pr Pr Pr

Pr Pr P

D

D S D D S

D S D D D

D D

a LeRi Le Le

a a Le Ra Ri a Le Ra Ri

a Le Ra Le Ri Le Le

Le Ta Le RiTa Le

δ ξ φ δ ξ φ δ δ ξ φ

δ ξ δ ξ δ ξ δ δ ξ δ φ

δ ξ φ δ φ δ φ δ δ φ

π ξφ π ξ φ π

= − + +

= − + + +

− − + +

+ + − 2 2 2 2
2

2 3 2 2 6 3 4 2 2 6 2
2 1 2

2 3 4 2 2 4 2 2 2 4 2 2
2

2 2 3 2 2 3 2
2

r ;

Pr Pr Pr Pr

Pr Pr Pr

Pr Pr .

D

D S D D D

D D D

D S D S

Ta

a a Le Ra Ri

Ta RiTa Ta

a Le Ra Ri a Le Ra

δ ξ φ

δ δ δ δ δ δ

π δ ξ π δ ξ π δ δ ξ

φ δ φ

= − + +

+ + −

+ −

 

Now Eq. (3.32) with 2 0∆ = gives, 
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( ) ( )( )
( )

( )( )
( ) ( )

2 1 2 22 2 22 2
2 12 21 2 2 2

2 1 2 1
22

2 22 1 1

1
Pr

Pr
.

r

osc
T S

D

D

D

Le Ri
Ra Ri Ra

a Le

Ri
Ta

a P

δ δ σ φσ δδ δ
δ σ φ

σ δ ξ
π

ξ σ

−

−

− −

− −

− + 
= − − +  

  +

+ −
+

 
+ 

                                    

(3.34)  

WEAK NONLINEAR ANALYSIS 

Although the linear stability analysis is sufficient for obtaining the stability condition of the motionless 
solution and the corresponding Eigen functions describing qualitatively the convective flow, it cannot 
provide information about the values of the convection amplitudes, nor regarding the rate of heat transfer. 
To obtain this additional information, a weak nonlinear stability analysis is performed using a truncated 
Fourier series representation method. 
For simplicity of analysis, we confine ourselves to the two-dimensional rolls, so that all the physical 
quantities are independent of y. We introduce a stream function such that xwzu ∂∂−=∂∂= ψψ ,  
into the Eqs. (3.14) - (3.15) to obtain 

2 2
2 1 2

2 2

1 1 0,
Pr T S

D

V T STa Ra Ra
t x z z x x

ψ
ξ

 ∂ ∂ ∂ ∂ ∂ ∂
∇ + + − + − = ∂ ∂ ∂ ∂ ∂ ∂                                                    

(3.35) 

2
1 2

2

1 1 0,
PrD

V Ta
t t z

ψ
ξ

 ∂ ∂ ∂
+ + = ∂ ∂ ∂                                                                                                        

(3.36) 

( )
( )

2 2

2 2

,
0,

,
TT T RiT

t x z x z x
ψ ψη

∂ ∂ ∂ ∂ ∂
− + − + − = ∂ ∂ ∂ ∂ ∂                                                                            

(3.37) 

( )
( )

2 ,1 0
,
S

S
t Le x z x

ψ ψφ
∂∂ ∂ − ∇ − + = ∂ ∂ ∂ 

.                                                                                              (3.38)     

Here, V is the z-component of the vorticity vector called zonal velocity. The first effect of non-linearity is 
to distort the temperature and concentration fields through the interaction of , Tψ  and also , Sψ . The 
distortion of these fields will correspond to a change in the horizontal mean, i.e., a component of the form 

( )sin 2 zπ  will be generated. Thus a minimal Fourier series which describes the finite amplitude free 

convection is given by 
( )sin( )sin( )A t ax zψ π= ,                                    (3.39) 

( ) cos( )sin( ) ( )sin(2 )T B t ax z C t zπ π= + ,                                  (3.40) 

( ) cos( )sin( ) ( )sin(2 )S D t ax z E t zπ π= + ,                                  (3.41)              

( ) cos( )sin( ) ( )sin(2 ),V F t ax z G t xπ π= +                                                                                         (3.42) 

where the amplitudes ( ), ( ), ( ), ( ), ( ) , ( ) ( )A t B t C t D t E t F t and G t  are to be determined from the 
dynamics of the system. 
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Substituting Eqs. (3.39)- (3.42) into the coupled nonlinear system of partial differential Eqs.  (3.35)-(3.38) 
and equating the coefficients of like terms, we obtain the following non-linear autonomous system of 
differential equations 

( )2 1\2
12 ,T S

PrA A Ta F a Ra B a Ra Dδ π
δ

= − − + −
                                                                               

(3.43) 

( )2
2( ) ,B a A Ri B a ACδ π= − + − +                                                                                                    (3.44)               

24 ,
2
aC C AB Ri Cππ= − + +

                                                                                                              
(3.45) 

21 ,D a A D a AE
Le
δ π

φ
 

= − + + 
                                                                                                          

(3.46) 

21 4 ,
2
aE AD E

Le
π π

φ
 

= − 
                                                                                                                     

(3.47)
 

2 1/ 2Pr .DF F Ta Aπ π
π ξ

 
= − − 

                                                                                                             
(3.48)

 

The non-linear system of autonomous differential equations is not suitable to analytical treatment for the 
general time-dependent variable and we have to solve it using a numerical method. After determining the 
numerical values of the amplitudes ( ), ( ), ( ), ( ), ( ) , ( ) ( )A t B t C t D t E t F t and G t  the Nusselt and 
Sherwood numbers can be obtained as a function of time. However, one can make qualitative predictions 
as discussed below. The steady analysis is performed by setting the left-hand side of Eqs. (3.43) - (3.48) 
to zero. 

Steady Finite Amplitude Motions 

From qualitative predictions we look into possibility of an analytical solution. In case of steady motions, 
Eqs (3.43) - (3.48) can be solved in closed form. Setting the left-hand side of Eqs. (3.43) - (3.48) equal to 
zero, we get 

2 1\2
1 0,T SA Ta F a Ra B a Ra Dδ π− + − =                                                                                               (3.49) 

( )2
2 0,a A Ri B aACδ π+ − + =

                                                                                                          
(3.50)

 

24 0,
2
aC AB Ri Cππ − − =

                                                                                                                 
(3.51)

 
2

0,a A D a AE
Le
δ π+ + =

                                                                                                                    
(3.52)

 
24 0,

2
aE AD

Le
π π

− =
                                                                                                                            

(3.53)
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2 1/ 2 0,F Ta Aπ π
ξ

− − =
                                                                                                                       

(3.54)
 

0,G =                                                                                                                                                     (3.55) 

writing B, C, D, E, F and G in terms of A, using  Eqs. (3.50)-(3.55) and substituting these in  

Eq. (3.49) with
2

8
A x= , we get 

2
1 2 3 0,A x A x A+ + =                                                                                                                               (3.56) 

Where 1 2 3,A A and A  are given as 

( )
( )

( )

4 2 2 2 4 2 4 2
1 1 1

4 2 4 2 2 2 2 2 2 2 2 2 2
2 1 1

2 2 2 2 2 2 2 2 2 2 2 4 2 2 4 2 2
1 2 1 2 1 1

2 2 4 2 2 2 2 2 2 2
1 2 1 2

2 2
3

4 4 ;

4 4 4 4

4 4 4

4 ;

4

S T

A a Le a Le Ta

A a Le Ra a Le Ra Ri a Le Ri a

a Le a Le Ri Ri a Le RiTa a Ta

a Le Ta a Le RiTa Ri

A a Le Ra

π δ π δ ξ

π π π δ π δ δ

π δ δ δ δ π δ ξ π δ δ ξ

π δ δ ξ π δ δ ξ

π

= +

= − − − +

+ + − − +

+ + −

= − ( )
( ) ( )

( )

2 2 2 2 2 2 2 2 2
1 2

2 2 2 2 2 2 2 2 2 4 2 2
1 2 2 1 2 1

4 2 2 2 2 2 2 2
1 2 1 2

4 4 4

4 4

4 .

S T S

S

Ri a Ra Ri Ri a Le Ra

a LeRa Ri Ri Ri Ri RiTa

Ta RiTa Ri

π δ π δ δ π δ

π δ δ δ δ δ δ δ π δ δ ξ

π δ δ δ ξ π δ δ δ ξ

− − − +

+ + − + − −

+ + −

 

The required root of Eq. (3.56) is given by 

( )
1

2 2
2 2 1 3

1

1 4 .
2

x A A A A
A
 

= − + − 
                                                                                                          

(3.57)
 

When we let the radical in the above equation vanish, we obtain the expression for the finite amplitude 
Rayleigh number FRa , which characterizes the onset of finite amplitude steady motions. The finite 
amplitude Rayleigh number can be obtained in the form 

( )
1

2 2
2 2 1 3

1

1 4 ,
2

FRa B B B B
B
 

= − + − 
                                                                                                    

(3.58) 

Where 1 2 3,B B and B are given as 

( )
( )( )( )( )

( )( )( ) ( )
( )( )( )( )( )

4 4 4 4 4 2 4 4 2
1

2 2 2 2 2 2 2 2 2
1 2

2 24 2 2 2 2 2 2
1 2

4 3 4 4 3 2 2 2 2 2 2 2 2 2 2 2
2 1 2

2 2 2 2 2 2
1

16 8

8 4 4 1

4 4 1 ;

32 8 8 4 4 1

2 4

S

S S

B a Le a Le Ri a Le Ri

a Le Ra Le Ri Ri Ta

Le Ri Ri Ta

B a Le Ra a Le Ra Ri a Le Le Ri Ri Ta

a Le Ri Le

π π

π δ π δ π δ π ξ

δ π δ π δ π ξ

π π π δ π δ π δ π ξ

δ π δ

= − +

+ + − − +

+ + − − +

= − + + + − − +

− + ( )( )( )( )2 2 2
2

4 2 4 2
3

4 1 ;

16 .S

Ri Ri Ta

B a Le Ra

π δ π ξ

π

− − +

=
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Heat and Mass Transport 

In the study of convection in fluids, the quantification of the heat and the mass transport is important. This 
is because the onset of convection, as the Rayleigh number is increased, is more readily detected by its 
effect on the heat and mass transport. In the basic state, heat and mass transport is by conduction alone.  

If H and J are the rate of heat and mass transport per unit area respectively, then 

0

total
T

z

T
H

z
κ

=

∂
= −

∂
 

and 
0

,total
S

z

S
J

z
κ

=

∂
= −

∂                                                                                    
(3.59) 

Where the angular bracket corresponds to a horizontal average and 

( )0 , ,total
zT T T T x z t
d

= −∆ +   and  ( )0 , , ,total
zS S S S x z t
d

= −∆ +
                                                 

(3.60) 

Substituting Eq. (3.40) into (3.42) and using the resultant equation in Eq. (3.59), we get 

( )1 2T TH C
d

κ π∆
= −           and            ( )1 2 .S SJ E

d
κ π∆

= −
                                                       

(3.61) 

The Nusselt (Nu) and Sherwood (Sh) numbers are respectively defined by 

1 2 ,
T

HNu C
T d

π
κ

= = −
∆

                                                                                                             (3.62) 

1 2 ,
S

JSh E
S d

π
κ

= = −
∆                                                                                                                     

(3.63)                                  

Writing C & E in terms of A, using Eqs (3.51)-(3.54) and substituting in Eqs.(3.62)-(3.63)  respectively,  
we obtain 

( )( )( )
2 2

2 2 2 2
2

81 ,
4 4

a xNu
Ri Ri a x

π
δ π π

= +
− − +

                                                                                      

(3.64) 

( )
2 2

2 2 2

21 .Le a xSh
Le a xδ

= +
+

                                                                                                                        
(3.65) 

RESULT AND DISCUSSION 

The effect of rotation on the onset of double diffusive convection in a saturated anisotropic porous layer, 
in the presence of an internal heat source is investigated analytically using both linear and nonlinear 
theories. In the linear stability theory the expressions for the stationary and oscillatory Rayleigh number 
are obtained analytically along with the expressions for frequency of oscillation. The critical Rayleigh 
number for the oscillatory mode is derived as a function of internal Rayleigh number, solute Rayleigh 
number, normalized porosity, Darcy-Prandtl number, Taylor number and Lewis number. The nonlinear 
theory provides the quantification of heat and mass transport and also explains the possibility of the finite 
amplitude motions. The neutral stability curves in the TRa a−  plane for various parameter values are as 
shown in Figs. 1-8. We fixed the values for the parameters as: 
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0.3, 0.9, 100, 60, 10, 0.9, Pr 50 3S DTa Ra Le and Riξ η φ= = = = = = = =  

except the varying parameter, from these figures it is clear that the neutral curves are connected in a 
topological sense. This connection allows the linear stability criteria to be expressed in terms of the 
critical Rayleigh number TcRa , below which the system is stable and unstable above. 

We observe from the figures 1(a) & (b), that the effect of increasing Ri  is to decrease the critical value 
of the Rayleigh number and corresponding wave number for stationary and oscillatory modes. Thus Ri  
has a destabilizing effect of rotation on the double diffusive convection in a saturated anisotropic porous 
layer. 

Figures 2(a) & (b), 3(a) & (b) and 4(a) & (b) indicate the effect of Taylor number ,Ta mechanical 
anisotropy parameter ξ  and thermal anisotropy parameter η   respectively on the neutral stability curves 
for the fixed values. It is observed that the critical values of stationary and oscillatory Rayleigh number 
increase with an increase of Ta , ξ  and ,η indicating that their effect is to inhibit the onset of both 
stationary and oscillatory convection. Thus Ta , ξ  and η have a stabilizing effect on the system for 
stationary and oscillatory modes.  

0 3 6 9 12 15850

900

950

1000
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3

2

Le = 10, Ras = 60, PrD = 50,
ξ = 0.3, Ta = 100, φ = 0.9, 
η = 0.9.

Ri = 1

a

RaT
St

Fig 1(a). Stationary neutral stability curves for different values of an Internal
 Rayleigh number Ri.
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Fig 1(b). Oscillatory neutral stability curves for different values of an Internal

 Rayleigh number Ri.
 

          

RaT
Osc

 

The neutral stability curves for different values of normalized porosity φ  are presented in Fig. 5. We 
observe from this figure that with an increase of φ  the minimum oscillatory Rayleigh number decreases 
implying that the effect is to advance the onset of oscillatory convection. As normalized porosity 
increases, the thermal “lag” effect (double advective behavior in the terminology is reduced. This makes 
advective heat transfer more effective and so makes it easier for the destabilizing thermal buoyancy 
gradient to produce convection. 

 Fig. 6 exhibits the effect of Darcy-Prandlt number PrD on the neutral stability curves for the fixed values 

of other governing parameters. From this figure it is evident that for small and moderate values of PrD the 

critical value of oscillatory Rayleigh number decreases with an increase of PrD , this trend is reversed for 

large values of PrD . 
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The effect of Lewis number Le on critical Rayleigh number is shown in Figs. 7(a) & (b). We observe that 
increase of Lewis number Le  increases the critical Rayleigh number indicating that the Lewis number 
stabilizes the system in both stationary and oscillatory mode.  

Figs. 8(a) & (b) depict the effect of solute Rayleigh number SRa on the neutral stability curves for 

stationary and oscillatory modes. We find that the effect of increasing SRa is to increase the value of the 
Rayleigh number for stationary mode.  

The variation of TcRa with SRa for different values of the internal Rayleigh number Ri  is depicted in 

Fig. 9. We found that with an increase of Ri  the critical Rayleigh number TcRa decrease for both 

stationary and oscillatory modes. Thus the effect of Ri  is to destabilize the system for both stationary and 
oscillatory modes.  

Figure 10 displays the variation of TcRa with SRa  for different values of Taylor numberTa . It is 

observed that with an increase of Ta  the oscillatory and the stationary critical Rayleigh number increase, 
implying that Ta  has a stabilizing effect on both the system. 

Figure 11 indicates the variation of TcRa with SRa for different values of mechanical anisotropy 

parameterξ for the fixed values of other parameters. It is important to note that TcRa increases with an 

increase of mechanical anisotropy parameter ξ indicating its stabilizing characteristic. 

Figure 12 shows the variation of TcRa with SRa for different values of thermal anisotropy parameterη . It 

is observed that when 1η > , the critical Rayleigh number TcRa increases with an increase of η indicating 
that the effect of increasing thermal anisotropy parameter is to delay the onset of stationary and oscillatory 
convection as compared to the isotropic case. On the other hand, when 1η < , the critical Rayleigh 

number TcRa decreases with decrease of η  indicating that the effect of decreasing thermal anisotropy 
parameter is to advance the onset of stationary and oscillatory convection as compared to the isotropic 
case. 

The variation of TcRa with SRa for different values of the Darcy-Prandlt number PrD is presented in Fig 
13. From this figure it is found that the critical oscillatory Rayleigh number decreases with an increase of 
Pr ,D  for smaller values of SRa this trend reverses. Thus PrD  has a dual effect on the system in oscillatory 

mode. Figure 14 shows the effect of normalized porosity parameter φ on the critical oscillatory Rayleigh 

number, when all other parameters are kept fixed. It is noticed that TcRa decreases with an increase of 

normalized porosity parameterφ . 

To understand the transient behavior the variation of Nusselt and Sherwood numbers with time has been 
considered and is depicted in Figs. 15(a) to (h) for different values of , ,Ri Ta andξ η . It is observed that 
both Nu and Sh start with a conduction state value close to 3 for 0t > . This periodic variation of Nu and 
Sh is very short lived and decays as time progresses. In other words, as time progresses a steady state is 
reached via a transient state.  
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From Figs. 15(a) & (b) it is clear that the heat transport increases slightly with increasing the internal 
Rayleigh number Ri and has insignificant influence on mass transport. Figs. 15(c) & (d) show the effect of 
the Taylor number Ta  on heat and mass transport. We find that an increase in Ta , increase both Nu  and 
Sh marginally. Figs. 15(d) & (e) we find that an increase in the value of mechanical anisotropic 
parameterξ the heat transport increases slightly, while enhances the amplitude of the mass transport. The 
effect of thermal anisotropic parameter η is to decrease the amplitude of the oscillation of heat flux while 
it has no significant effect on mass flux and is shown in Figs. 15(g) & (h). 
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Fig 7(a). Stationary neutral stability curves for different values of
 Lewis number Le.
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Fig 7(b). Oscillatory neutral stability curves for different values of 

Lewis number Le.
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Fig 8(a). Stationary neutral stability curves for different values of 
Solute Rayleigh number RaS.
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Fig 8(b). Oscillatory neutral stability curves for different values of 
Solute Rayleigh number RaS.
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Fig 2(a). Stationary neutral stability curves for different values of 
Taylor number Ta.
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Fig 2(b). Oscillatory neutral stability curves for different values of
 Taylor number Ta.
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Ri = 3, Ta = 100, φ = 0.9, 
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Fig 3(b). Oscillatory neutral stability curves for different values of
 Mechanical anisotropy parameter ξ.
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Figs.  15 (a) & (b) Variation of Nu and Sh with time for different values of  Ri ; (c) & (d) Variation of Nu 

and Sh with time for different values of Ta ; (e) & (f) Variation of Nu and Sh with time for different 
values of ξ ; (g) & (h)Variation of Nu and Sh with time for different values of η . 

CONCLUSION 

The effect of rotation on the onset of double diffusive convention in a saturated anisotropic porous layer 
with internal heat source is investigated analytically using both linear and weak nonlinear stability 
analysis. The linear theory provides the onset criteria for both stationary and oscillatory convection. The 
nonlinear theory which is based on the truncated Fourier technique provides a mean to measure the 
convection amplitudes and the rate of heat and mass transfer. The main conclusions of the present study 
are as follows. 
• From the neutral stability curves, it is found that the effects of increasing , PrDRi andφ are to 

advance the onset of convection, whereas the effect of increasing , , , STa Le and Raξ η is to sustain 
the stability of the system. 

• Critical value of TRa decreases as the values of , PrDRi and φ increase, while it increases with 

increasing ,Ta andξ η . 
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• Heat transfer increases slightly with an increase of ,Ri Ta and ξ  and decreases with an increase of 
η . 

• Mass transfer increases with increase of  Ta and ξ  and has no significant effect on Ri and η . 
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Nomenclature 
 

a  :  Wave number 22 ml +  
d  :  Height of the porous layer 
g :  Gravitational acceleration ( )g−,0,0  
H :  rate of heat transport per unit area  
K :  permeability tensor, ( ) ( )kkjjii 11 −− ++ zx KK  

Le   :  Lewis number, /T Sκ κ  

,l m   : Horizontal wavenumbers 
Nu  :            Nusselt number 
P  :  Pressure 

PrD  :  Darcy–Prandtl number, 2 / z Tzd Kγεν κ  

q  :  Velocity vector, ( ), ,u v w  

SRa   :  Solute Rayleigh number, /S Tz Tzg TdKβ νκ∆  
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TRa  :  Thermal Rayleigh number, /T Tz Tzg TdKβ νκ∆  

Ri  :  Internal Rayleigh number, 2 / TzQd κ  

S  :  Solute concentration 
Sh  :  Sherwood number 

S∆  :  Salinity difference between the walls  
Ta         :  Taylor number, ( )22 νεzΩK  
t            :  Time 
T           :  Temperature 

T∆        :  Temperature difference between the walls 
, ,x y z   :  Space coordinates 

Greek Symbols 

Tβ  :  Thermal expansion coefficient  

Sβ  :  Solute expansion coefficient  
Φ  :  Dimensionless amplitude of concentration perturbation  
φ  :  Normalized porosity, /ε γ  

γ  :  Ratio of specific heats, ( ) ( )/ pm f
c cρ ρ  

η  :  Thermal anisotropy parameter, /Tx Tzκ κ  

Tκ  :  Anisotropic thermal diffusion tensor 

Sκ  :  Solute diffusivity 
κ  :  Diffusivity 
ε  :  Porosity 
µ  :  Dynamic viscosity 

eµ  :  Effective viscosity 

ν  :  Kinematic viscosity, 0/µ ρ  

Θ  :  Dimensionless amplitude of temperature perturbation  
ρ  :  Fluid density 
σ  :  Growth rate 
Ω  :  Angular velocity of rotation, ( )0,0,Ω  

ξ  :  Mechanical anisotropy parameter, /x zK K  
ψ  :  Stream function 
Other Symbols 

2 2
2

2 2h x y
∂ ∂

∇ +
∂ ∂

 

2
2 2

2h z
∂

∇ ∇ +
∂  

Subscripts & Superscripts 
b :  Basic state 
c :  Critical 
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f :  Fluid  
h :  Horizontal 
m :  Porous medium  
0 :  Reference value 
S :  Solid 
∗  :  Dimensionless quantity 
'  :  Perturbed quantity 
F :  Finite amplitude 
Osc :  Oscillatory state 
St :  Stationary state 
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