Journal of Chemical, Biological and Physical Sciences

An International Peer Review E-3 Journal of Sciences
Available online atwww.jcbsc.org

Section C: Physical Sciences

A Theoretical evaluation of energy gap of molecules with different mass ratio in Fermi-Bose mixtures near broad interspecies Fehbach resonances

Sunil Kumar ${ }^{1}$, Balaram Singh ${ }^{2}$ and L. K. Mishra ${ }^{3}$
${ }^{1}$ Vill-Shivpur Chhapara, Dist-Bhojpur (Bihar)
${ }^{2}$ Retd (Associate Professor) Department of Physics, H. D. Jain College Ara (Bihar)
${ }^{3}$ Department of Physics, Magadh University, Bodh-Gaya-824234 (Bihar)

Received: 03 November 2014; Revised: 24 November 2014; Accepted: 26 November 2014

Abstract

In this paper, we have theoretically studied Fermi-Bose mixtures near broad interspecies resonances. Using Variational method, we have evaluated energy of the molecule, W_{B} as a function of scattering length $\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{b}}\right]^{-1}$ for different mass ratio, critical scattering length $\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}^{(1)}\right]^{-1}$ as a function of $\left(\mathrm{m}_{\mathrm{B}} / \mathrm{m}_{\mathrm{F}}\right)$, pair-breaking energy Δ in the unit of $\left(\varepsilon_{\mathrm{F}}{ }^{\mathrm{R}}\right)$ and pair chemical potential $\mu\left(\varepsilon_{\mathrm{F}}^{\mathrm{R}}\right)$ as a function of scattering length $\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{b}}\right]^{-1}$ for ${ }^{40} \mathrm{~K}-$ ${ }^{87} \mathrm{Rb}$.Our evaluated theoretical results are in good agreement with other theoretical workers.

Keywords: Fermi-Bose mixtures, Near broad resonances, Interspecies Feshbach resonance, Many-body correlations, Pauli blocking effect, Dilute molecular Fermi gas, Pair breaking energy, Pair chemical potential, Condensed population, Fermi gas-BEC mixture.

INTRODUCTION

Ultacold quantum gases in condensed matter physics have generated a tremendous excitement during recent years ${ }^{1}$. In this excitement, we have super fluid to Mott insulator transition ${ }^{2}$, the BEC-BCS crossover in fermionic super fluids ${ }^{3}$ and the Berezinski-Kosterlitz Thouless (BKT) transition in two dimensional Bose gas ${ }^{4}$. These are the new advancement in ulracold quantum gases. A large number of many-body systems may become accessible through the advent of quantum mixtures of different atomic species. In particular, Bose-Fermi mixtures with widely tunable interactions reveal boson-mediated interactions between fermions and boson-induced p-wave superfluidity ${ }^{5,6}$. Interactions between atoms can be strongly modified by tuning magnetic field to Feshbach resonances. Here, the molecular state has the same energy as the colliding atoms. The mechanism has been used to change the properties of ultacold bosonic gases ${ }^{7-10}$. However, for degenerate Fermi gases such control over the interaction strengths are crucial for super fluid phase transition. For dilute Fermi gas, the predicted phase-transition occur at temperatures that are experimentally not accessible, unless the scattering length is reasonably enhanced. Recently, interspecies Feshbach resonances in Fermi-Bose mixtures ${ }^{6} \mathrm{Li}-{ }^{23} \mathrm{Na},{ }^{40} \mathrm{~K}-{ }^{87} \mathrm{Rb}$ and ${ }^{6} \mathrm{Li}-{ }^{87} \mathrm{Rb}$ have been experimentally observed ${ }^{11-15}$. Recently, weakly bound ${ }^{40} \mathrm{~K}-{ }^{87} \mathrm{Rb}$ pairs prepared near Feshbach resonances were further converted into cold molecules at JILA ${ }^{16}$. This research can lead to a new opportunity of studying quantum state of matter ${ }^{17}$. While locations and width of resonances observed in experiments agree quite well with theories ${ }^{18}$, many-body correlations in Fermi-Bose mixtures remain to be probed. On the other hand theoretical studies on Fermi-Bose mixtures have been mainly focused on narrow resonances ${ }^{19-21}$. It was seen that the phase boundaries depend on atom-molecule coupling strengths. It was also argued that molecules do not interact with each other or with Fermi atoms.

MATHEMATICAL FORMULA USED IN THE STUDY

One begins with one -channel Hamiltonian for Fermi-Bose mixtures near broad resonances

$$
\begin{equation*}
H=\Sigma_{k} \varepsilon_{k}^{F} f_{k}^{+} f_{k}+\Sigma_{k} \varepsilon_{k}{ }^{B} b_{k}^{+} b_{k}+\frac{V_{b f}}{\Omega} \Sigma_{k, k, Q} f_{\frac{m_{R}}{m_{B}}}{ }^{+} Q+k b_{\frac{m_{R}}{m_{B}}}{ }^{+} Q-k f_{\frac{m_{R}}{m_{B}}} Q+k^{\prime} b_{\frac{m_{R}}{m_{B}}} Q-k^{\prime} \tag{1}
\end{equation*}
$$

Where $f^{+}{ }_{k} b^{+}{ }_{k}\left(f_{k} b_{k}\right)$ are creation (annihilation) operators for Fermi and Bose atoms respectively and $\varepsilon^{F(B)}{ }_{k}=\frac{\hbar^{2}|k|^{2}}{2 m_{F(B)}}$ are kinetic energies for fermions (bosons) and Ω is the volume. V_{bf} is the strength of the interaction and it is related to interspecies scattering length a_{bf} by the following equation
$\frac{1}{V_{b f}}=\frac{m_{R}}{2 \pi a_{b f} \hbar^{2}}-\frac{1}{\Omega} \Sigma_{k} \frac{1}{\varepsilon_{k}{ }^{R}}$

Where $m_{R}=m_{B} m_{F} /\left(m_{B}+m_{F}\right), \varepsilon_{k}^{R}=\frac{\hbar^{2} k^{2}}{2 m_{R}} \cdot \frac{m_{B}}{m_{F}}$ is the Fermi-Bose mass ratio. One assumes that the boson-boson and fermion-fermion interactions are weak and practically negligible. We only consider homogeneous mixtures with an equal population of fermions and bosons.

The Q -dependence binding energy $\mathrm{W}_{\mathrm{B}}(<0)$ can be obtained as a solution to a two-body equation

$$
\begin{equation*}
-\frac{m_{R} \Omega}{2 \pi a_{b f} \hbar^{2}}=\left[\sum_{\left|\frac{m_{R}}{m_{B}} Q+k\right|>k_{F}} \frac{1}{\varepsilon_{k}^{R}-\varepsilon_{F}{ }^{R}-w_{B}}-\frac{1}{\varepsilon_{k}{ }^{R}}\right] \tag{3}
\end{equation*}
$$

Q is total arbitrary momentum. We have binding energy of a pair of Fermi and Bose atoms with opposite momentum ($k,-k$) in the presence of condensate (BEC) and Fermi surfaces of Fermi atoms which blocks all states below its Fermi momentum hk. We have

$$
\varepsilon_{F}{ }^{B}=\frac{\hbar^{2} k_{F}^{2}}{2 m_{B}}, \quad \varepsilon_{Q}{ }^{c}=\hbar^{2} Q^{2} / 2\left(m_{F}+m_{B}\right)^{\prime} \quad W_{B}(Q)=\varepsilon_{F}{ }^{B}+\varepsilon_{Q}{ }^{c}+W_{B}
$$

In the light of small $\mathrm{k}_{\mathrm{F}} \mathrm{a}_{\mathrm{bf}}(<0)$ and when $\mathrm{Q}=0.0$, equation (3) reduces to
$W_{B}=-4 \varepsilon_{F}{ }^{R} \exp \left(\frac{\pi}{k_{F} a_{b f}}\right)$
$\varepsilon_{F}^{R}=\frac{\hbar^{2} k_{F}^{2}}{2 m_{R}}$
From these relations, one gets the dispersion of two-body bound states. Near resonances, one considers a simplest pairing wave function ansatz
$\mid g . s>=\exp \left(c_{0} b^{+}{ }_{0}\right) \prod_{k \neq 0}\left(u_{k}+v_{k} f_{k}{ }^{+} b_{-k}{ }^{+}+\eta_{k} f^{+}{ }_{k} \mid v a c>\right.$
Where u_{k}, v_{k} and η_{k} are three families of variational parameters. The expectation value of energy can be obtained as
$E=F+\mu^{F} N_{F}+\mu^{B} N_{B}$
$F=\Sigma_{k}\left(\left|u_{k}\right|^{2}+\left|\eta_{k}\right|^{2}\right) \zeta^{F}{ }_{k} \quad+\Sigma_{k}\left|v_{k}\right|^{2} \zeta_{k}{ }^{B}+\frac{v_{b l}}{\Omega} \Sigma_{k, l} v_{k}^{*} u_{k} v_{l} u_{l}{ }^{*}$
Here, one has introduced new variables $\zeta^{F(B)}=\varepsilon_{k}^{F(B)}{ }_{k}-\mu_{k}{ }^{F(B)}$ where $\mu^{F(B)}$ are chemical potentials of bosons and fermions respectively. One then minimizes equation (7) with respect to $u_{k}, \mathrm{v}_{\mathrm{k}}$ and η_{k} with respect to the normalization condition $\left|u_{k}\right|^{2}+\left|v_{k}\right|^{2}+\left|\eta_{k}\right|^{2}=1$. Equilibrium condition can then be obtained and then there are two solutions for any given value of k

- An unpaired states with $\eta_{\mathrm{k}}=1$ and $\mathrm{u}_{\mathrm{k}}=0$ and $\mathrm{v}_{\mathrm{k}}=0$
- A paired state with $\eta_{k}=0$ and
$v_{k}^{2}=\frac{1}{2}\left(1-\frac{\zeta_{k}{ }^{R}}{E_{k}}\right)$
$u_{k}{ }^{2}=\frac{1}{2}\left(1+\frac{\zeta_{k}{ }^{R}}{E_{k}}\right)$
3 J. Chem. Bio. Phy. Sci. Sec. C, Nov. 2014 - Jan. 2015; Vol.5, No.1;731-739.

$$
\begin{equation*}
\Delta=\left(-\frac{V_{b l}}{\Omega}\right) \Sigma\left(1-\eta_{k}^{2}\right) u_{k} v_{k} \tag{8}
\end{equation*}
$$

Where

$$
\left.\left.E_{k}=\sqrt{\left(\zeta_{k}^{R}\right.}\right)^{2}+4 \Delta^{2}\right]
$$

$$
\begin{equation*}
\zeta_{k}{ }^{R}=\zeta_{k}{ }^{F}+\zeta_{k}{ }^{B} \tag{9}
\end{equation*}
$$

For a given $\mathbf{k}, \eta_{\mathbf{k}}$ can be either 0 or 1 for ground states and the pair breaking energy Δ is also a measure of pair correlation. Chemical potential $\mu^{\mathrm{B}}, \mu^{\mathrm{F}}$ only enter the equation through an effective pair chemical potential μ, where $\mu=\mu^{\mathrm{B}}+\mu^{\mathrm{F}}$. The pairing gap Δ, μ as well as condensed population $\left|c_{0}\right|^{2}$ are determined self-consistently by

$$
\begin{align*}
& N_{F}=\Sigma_{k}\left[v_{k}^{2}\left(1-\eta_{k}^{2}\right)+\eta_{k}^{2}\right] \tag{a}\\
& N_{B}=\left|c_{0}\right|^{2}+\Sigma_{k} v_{k}^{2}\left(1-\eta_{k}^{2}\right) \tag{b}
\end{align*}
$$

$\frac{-m_{R} \Omega}{2 \pi a_{b l} \hbar^{2}}=\Sigma_{k} \frac{1-\eta_{k}{ }^{2}}{\left[\left(\varepsilon_{k}{ }^{R}-\mu\right)^{2}+4 \Delta^{2}\right]^{\frac{1}{2}}}-\Sigma_{k} \frac{1}{\varepsilon_{k}{ }^{R}}$
Here equation 10 (c) is the gap equation for mixtures. One assumes η_{k} to be step function
$\eta_{\mathrm{k}}=\left\{1 \quad\right.$ if $\mathrm{k}<\mathrm{xk}_{\mathrm{F}}$

0 Otherwise

Here x is a dimensionless variational parameter. It specifies the size of the residue Fermi surface of unoccupied Fermi atoms. Only fermions outside the surface $\mathrm{k}=\mathrm{xk}_{\mathrm{F}}$ are involved in pairing those bosons.

DISCUSSION OF RESULTS

In this paper, we have studied Fermi-Bose mixtures near broad interspecies resonances. We have used the theoretical formalism of S. Mahammod etal ${ }^{22}$ in this study. In this formalism, they have used variational method where the fraction of unpaired Fermi atoms acts as a variational parameter. In Table T1, we have shown the evaluated results of energy gap of molecule W_{B} in the unit of $\mathcal{E}_{\mathrm{F}}{ }^{\mathrm{R}}$ as a function of $\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{bf}}\right]^{-1}\left(1 / \mathrm{a}_{\mathrm{bf}}\right.$ $\left.<1 / \mathrm{a}^{(1)}\right)$ with different mass ratios or mixtures. From our evaluated results, it appears that W_{B} decreases as $\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{b}}\right]^{-1}$ and becomes zero for some value of $\left.\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{b}}\right]^{-1}$. The value of W_{B} is large for $\mathrm{K}-\mathrm{Rb}$ mixture and small for Li-Rb mixture. In Table T2, we have shown the evaluated results of critical scattering length $\left[K_{F} a^{(1)}\right]^{-1}$ as a function of mass ratio $\left(m_{B} / m_{F}\right)$. This evaluation gives an idea that when W_{B} becomes negative, a small fraction of Fermi and Bose atoms start forming a molecule or a dilute molecular Fermi gas signifying a phase transition a ${ }^{(1)}$. Once all atoms form molecules, condensates becomes completely
dappled implying a second critical scattering length. Such type of picture was earlier proposed for mixtures near narrow resonances ${ }^{23,24}$.

However, a finite two-body gap W_{B} only ensures a local stability of the Fermi gas BEC mixture against emergence of a Fermi gas of molecules. And since the extent of molecule d_{m} is typically comparable to the Fermi wave length $\left(2 \pi / \mathrm{K}_{\mathrm{F}}\right)$ near broad resonance, anti-commutators of composite molecule fields differ from the ones of fundamental fermions with substantial deviations of order $\left(\mathrm{k}_{\mathrm{F}} \mathrm{d}_{\mathrm{m}}\right)^{3}$.Consequently, pairs may appear even before the two-body gap W_{B} vanishes. Below, one carries out calculations to differentiate the two sceneries and illustrates a pairing state without molecular Fermi surfaces ${ }^{25}$. In Table T 3 , we have shown the evaluated results of $\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{cr}}\right]^{-1}$ scattering length at which the first order phase transition between a Fermi gas-BEC mixture and a fully paired mixture. The state of extended molecules is completely different from Fermi gas of molecules. These pairs, though fermionic in nature, occupy a state in a two particle channel with zero total momentum and therefore form a Fermi condensate of extended molecules. In Table T4, we have shown the evaluated results of pair breaking energy Δ in the unit of $\varepsilon_{\mathrm{F}}{ }^{\mathrm{R}}$ as a function of scattering length $\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{bf}}\right]^{-1}$ near $\left(\mathrm{a}_{\mathrm{cr}}\right)$ for mass ratio $\left(\mathrm{m}_{\mathrm{B}} / \mathrm{m}_{\mathrm{F}}\right)=2.175$. A pair of atoms with momentum ($k,-\mathrm{k}$) can be broken when rf (radio frequency) pulses are applied to transfer a Fermi atom to a third hyperfine spin state ${ }^{26,27}$ that weakly interacts with the Fermi-Bose mixtures. Our theoretically evaluated results are in good agreement with other theoretical workers ${ }^{28,29}$.

We have used the formulae for the frequency shift in the rf spectroscopy
$\hbar \Delta \omega(k)=\frac{1}{2}\left\{\zeta_{k}^{R}+\left\{\left|\zeta_{k}^{R}\right|^{2}+4 \Delta^{2}\right\}^{\frac{1}{2}}\right.$
We have also repeated the calculations for pair chemical potential $\mu\left(\varepsilon_{\mathrm{F}}^{\mathrm{R}}\right)$ as a function of scattering length $\left.\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{b}}\right]^{-1}$ for mass ratio $\left(\mathrm{m}_{\mathrm{B}} / \mathrm{m}_{\mathrm{F}}\right)=2.175$. The evaluated results are shown in Table T5. Results were compared with other theoretical workers ${ }^{28,29}$. Some recent results ${ }^{30-35}$ also reveals the same behavior.

Table T1: An evaluated results of W_{B} the energy of the molecule in the unit of $\varepsilon_{F}{ }^{R}$ as a function of $\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{b}}\right]^{-1}\left(1 / \mathrm{a}_{\mathrm{bf}}<1 / \mathrm{a}^{(1)}\right)$ with different mass ratios or mixtures

$\left(1 / \mathrm{K}_{\mathrm{Fa}} \mathrm{f}\right)$	$\longleftarrow \sim$	W_{B} (energy of molecule) $\varepsilon_{\mathrm{F}} \mathrm{R}$	
	$\mathrm{K}-\mathrm{Rb}$	$\mathrm{Li}-\mathrm{Na}$	$\mathrm{Li}-\mathrm{Rb}$
	0.452	0.237	0.158
-1.6	0.437	0.215	0.134
-1.5	0.422	0.208	0.116
-1.4	0.408	0.186	0.102
-1.2	0.386	0.132	0.086
-1.0	0.356	0.116	0.058
-0.8	0.322	0.095	0.042
-0.6	0.286	0.047	0.035
-0.4	0.187	0.033	0.007
-0.2	0.108	0.006	0.0007
-0.1	0.050	0.002	0.0002
0.0			

TableT2: An evaluated results of critical scattering length $\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}^{(1)}\right]^{-1}$ as a function of $\left(\mathrm{m}_{\mathrm{B}} / \mathrm{m}_{\mathrm{F}}\right)$

$\left(\mathrm{m}_{\mathrm{B}} / \mathrm{m}_{\mathrm{F}}\right)$	$\left[\mathrm{K}_{\left.\mathrm{Fa}^{(1)}\right]^{-1}} \stackrel{\longmapsto}{ }\right.$	
	Our result	Other’s results
1	0.386	0.295
2	0.165	0.132
3	0.054	0.037
4	-0.128	-0.098
5	-0.189	-0.164
6	-0.226	-0.278
7	-0.354	-0.365
8	-0.428	-0.455
9	-0.509	-0.536
10	-0.556	-0.574
11	-0.622	-0.655
12	-0.658	-0.687
13	-0.702	0.722
14	-0.746	-0.767
15	-0.785	-0.798

TableT3: An evaluated results of $\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{cr}}\right]^{-1}$ (scattering length at which the first order phase transition occurs) as a function of ($\mathrm{m}_{\mathrm{B}} / \mathrm{m}_{\mathrm{F}}$) Results were compared with other theoretical workers.

$\left(\mathrm{m}_{\mathrm{B}} / \mathrm{m}_{\mathrm{F}}\right)$	$\left[\mathrm{K}_{\mathrm{Fa} \mathrm{arcr}]^{-1} \longrightarrow}^{\longrightarrow}\right.$	
	Our results	Other results
1	0.056	0.066
2	0.008	0.012
3	-0.067	-0.042
4	-0.128	-0.147
5	-0.235	-0.258
6	-0.308	-0.337
7	-0.375	-0.398
8	-0.422	-0.446
9	-0.478	-0.508
10	-0.526	-0.545
11	-0.595	-0.607
12	-0.677	-0.646
13	-0.732	-0.705
14	-0.756	-0.766
15	-0.778	-0.785

TableT4: An evaluated results for pair breaking energy in the unit of $\varepsilon_{\mathrm{F}}{ }^{\mathrm{R}}$ as a function of scattering length $\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{bf}}\right]^{-1}$ for mass $\left(\mathrm{m}_{\mathrm{B}} / \mathrm{m}_{\mathrm{F}}\right)=2.175\left({ }^{40} \mathrm{~K}-{ }^{87} \mathrm{Rb}\right)$

$\left(1 / \mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{bf}}\right)$	$\Delta\left(\varepsilon_{F}^{R}\right) \longrightarrow$	
	Our results	Other results
-0.30	0.056	0.025
-0.25	0.062	0.035
-0.20	0.089	0.047
-0.15	0.095	0.068
-0.10	0.456	0.395
-0.05	0.463	0.412
0.00	0.489	0.446
0.05	0.502	0.488
0.10	0.525	0.522
0.20	0.543	0.539

TableT5: An evaluated results of pair chemical potential $\mu\left(\varepsilon_{F}{ }^{R}\right)$ as a function of scattering length

$$
\left[\mathrm{K}_{\mathrm{F}} \mathrm{a}_{\mathrm{bf}}\right]^{-1} \text { for mass }\left(\mathrm{m}_{\mathrm{B}} / \mathrm{m}_{\mathrm{F}}\right)=2.175\left({ }^{40} \mathrm{~K}-{ }^{87} \mathrm{Rb}\right)
$$

$\left(1 / \mathrm{K}_{\mathrm{Fabf}}\right)$	$\mu\left(\varepsilon_{F}^{R}\right) \longrightarrow$	
	Our results	Other's results
-0.30		0.922
-0.25	0.822	0.876
-0.20	0.806	0.843
-0.15	0.785	0.827
-0.10	0.625	0.607
-0.05	0.567	0.586
0.00	0.548	0.562
0.05	0.522	0.543
0.10	0.506	0522
0.20	0.467	0.506

CONCLUSION

From the above theoretical investigation and analysis, we have come across the following conclusions
(1) Variational approach works quite well in the study of molecule formation and momentum distribution in Fermi-Bose mixture
(2) Gapless molecular states and pair breaking energies can be probed using photoemission and radio frequency spectroscopy respectively.

REFERENCES

1. J. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys.,2008, 80, 885
2. Ultra-Cold Fermi gases, Proceedings of International School of Physics, "Enrico Fermi’’ Course CLXIV, Varenna, 2006,edited by M. Ingusico, W. Ketterle and C.Salomon (IOS, Amsterdam, 2008.
3. W. Ketterle and M. Zwierleier, Riv Nuovo Cimento,2008,31, 247
4. Z. Hadzibaic and J. Dalibard, Riv. Nuovo Cimento, 2011, 34, 389
5. M. J. Bijlsma, B. A. Hernga and H. T. C. Stoof, Phys. Rev. 2000, A61, 053601
6. H. Herselberg, C. J. Petchik, H. Smith and L. Vivirit, Phys. Rev. Lett.(PRL),2000, 85, 2418
7. A. Schirotzek, C. H. Wu and M. W. Zwierlein, Phys. Rev. Lett. (PRL) , 2009, 102, 230402
8. C. H. Wu, I. Santiago, J. W. Park and M. W. Zwierlein, Phys. Rev.2011, A84, 011601
9. E. Frathi and P. Pievi, Phys. Rev. 2010, A81, 051605
10. Z. Q. Yu, S. Zhang and H. zhai, Phys. Rev. 2011 A83, 041603
11. C. A. Stan, M. W. Zwierlein, C. H. Schunck and W.Ketterle ,Phys.Rev. Lett (PRL), 2004 93, 143001
12. S. Inauye, J. Golwin, M. L. Olsen and D.S. Jin, Phys. Rev. Lett (PRL),2004, 93,183201
13. C.Ospelkaus, S. Ospelkaus, K. Sengstok and K. Bongs, Phys. Rev. Lett.(PRL),2006, 96, 020401
14. J. J. Zirbel, K. K.Ni, S. Ospelkaus, C. E. Wieman and D. S. Jin, Phys. Rev. Lett. (PRL),2008, 100, 143201
15. M. Tejlibar, A. C. Voigt, T. Akoi and K. Dieckmann, Phys. Rev. Lett. (PRL),2008 100, 010401
16. K. K. Ni, S. Ospelkaus, M. H. G. De Miracda, D. S. Jin and J. Ye, Science, 2008, 322, 231
17. B. Mihaila, S.gaudio and K. S. Bedell, Phys. Rev.,2007, A75, 013603
18. D. A. Abanin, P. A. Lee and L. S. Levitov, Phys. Rev. Lett.(PRL), 2007, 98, 156801
19. S. Giorgini, L. Pitaevskii and S. Stringari, Rev. Mod. Phys.,2008, 80, 1215
20. N. V. Prokov, And B. V. Svistunov, Phys. Rev.,2009 ,A80,035605
21. K. Helfrich, H. W. Hammav and D. S. Petrov, Phys. Rev.,2010, A81, 042715
22. S. Mohammad, J. Liang Song and F. Zhou, arXiv: 1003.3096v1 [cond-mat. Quant.gas] 16 march 2010
23. S. Powell, S. Sachdev and H. P. Buchlav, Phys. Rev ,2005, B72, 024534
24. D. S. Petrov, C. Salomon and G. V. Shlyapnikov, Phys. Rev. Lett. (PRL),2004, 93, 090404
25. F. M. Marchltti, C. J. M. Malhm, D. A. Huse and M. M. Parisch, Phys. Rev, 2008, B78, 134517
26. C. Mora and F. Chevy, Phys. Rev. Lett. (PRL),2010, 104, 230402
27. Z. Yu, S. Zollner and C. J. Pethick, Phys. Rev. Lett. (PRL), 2010, 105, 188901
28. K. Helfrich, H. W. Hammer and D. S. Petrov, Phys. Rev, 2010 A82, 042715
29. C. H. Wu, I. Santiago, J. W. Park and M. W. Zwierlein, Phys. Rev ,2011 A84, 011601
30. M. S. Heo, T. T. Wang, C. A. Christensen and W. Ketterle, Phys. Rev, 2012 A86, 021602
31. C. H. Wu, J. W. Park, P. Ahmadi, S. Wall and M. W. Zwierlien, Phys. Rev. Lett. (PRL),2012, 109, 085301
32. G. Bertainia, E. Pratini, S. Giorgini and P. Pirri, Phys. Rev. Lett., 2013 110, 115303
33. I. Brouzos and P. Schmelchar, Phys. Rev.,2013, A87, 023605
34. P. G. Bugnion and G. J. Condult, Phys Rev.,2013, A88, 013601
35. Z.Shiltan etal., Phys. Rev. Lett.(PRL), 2014, 113, 063202.

Corresponding author: Sunil Kumar

Vill-Shivpur Chhapara, Dist-Bhojpur (Bihar)

