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Abstract: Using the theoretical formalism of Jakub Zakrzewski ( cond-
mat/0406186v3 (2005), we have theoretically evaluated quantum phase transition 
from a super fluid to Mott insulator in a gas of ultra-cold atoms. Our theoretically 
evaluated results for mean field particle density distribution as a function of r/a are in 
good agreement with the results of quantum Monte Carlo simulation results. This 
calculation also indicates that mean field Gutzwiller approximation allows one to 
simulate the dynamics of Bose-Hubbard model taking into account of realistic 
experimental conditions. Our theoretically evaluated results are in good agreement 
with other theoretical workers. 
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INTRODUCTION 

The Bose-Hubbard model1,2 is one of the standard models for studying the interacting particles in a 
cold gas placed in an optical lattice. The reported realization3 of a quantum phase transition between 
super fluid (SF) and Mott insulator (MI) phase showed that one can control the parameters of the 
model at will. This has triggered several studies involving Bose condensate4-9 and Bose-Fermi 
mixtures10-13 placed on optical lattice. Several groups have also tried to understand the details of the 
experiments3 to check the underlying physics involved in it.  

A physical system that crosses the boundary between two phases changes its properties in a 
fundamental way. When the temperature of the system approaches zero, all thermal fluctuations die 
out. This prohibits phase transition in a classical system at zero temperature as their opportunity to 
change has vanished. However, their quantum mechanical counterparts can show fundamentally 
different behavior. In quantum system, fluctuations are present even at zero temperature due to 
Heisenberg uncertainty relation. These quantum fluctuations may be strong enough to derive a 
transition from one phase to another bringing about the macroscopic change. 

 A prominent example of such a quantum phase transition is the change from the super fluid phase to 
Mott insulator phase in a system consisting of bosonic particles with repulsive interactions hopping 
through a lattice potential. This system was first studied theoretically in the context of super fluid to 
insulator transitions in liquid helium14. Jakisch etal15 have proposed that such a transition might be 
observable when an ultra-cold gas of atoms with repulsive interactions is trapped in a periodic 
potential. Here, one considers an atomic gas of bosons at low enough temperatures that a BE 
condensate is formed. The condensate is a super fluid and is described by a wave function that exhibits 
long range coherence16.  

An intriguing situation appears when the condensate is subjected to a lattice potential in which the 
bosons can move from one lattice site to the next by tunnel coupling. If the lattice potential is turned 
on smoothly the system remains in the super fluid phase as long as the atom-atom interaction are small 
compared to the tunnel coupling. In this regime, a delocalized wave function minimizes the dominant 
kinetic energy, and also minimizes the total energy of the many body system. In the opposite limit 
when the repulsive atom atom interactions are large compared to the tunnel coupling, the total energy 
is minimized when each lattice site is filled with same number of atoms. The reduction of fluctuation 
in the atom number on each site leads to increased fluctuation in the phase. Thus in the state with fixed 
atom number per site phase coherence is lost. In addition, a gap in the excitations spectrum appears. 
The normal phase transition is driven by the competition between inner energy and entropy whereas 
quantum phase transition is driven between the kinetic and interaction energy. 

In this paper, using the theoretical formalism of J. Zakrzewski17,18, we have theoretically studied the 
quantum phase transition from a super fluid to a Mott insulator in a gas of ultra-cold atoms. We have 
also theoretically evaluated mean field particle density distribution as a function of r/a taking different 
set of parameters U, U0 and κ. We have also evaluated atom density distribution (accumulations of 
sites) as a function of r/a by taking four sets of parameters V, N and γSF where V is lattice depth 
potential, N is total number of atoms and γSF is super fluid factor. Our theoretically evaluated results 
are in good agreement with other theoretical workers19-21.  
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MATHEMATICAL FORMULA USED IN THE EVALUATION: 

The Bose-Hubbard Hamiltonian describing the system takes the form22 

,
( 1)

2i j i i i i
i j i i

UH J a a n n W n+

< >

= − + − +∑ ∑ ∑                          (1) 

Where ni=ai
+ai is occupation number operator at site i (with ai being the corresponding annihilation 

operator) Wi denotes the energy offset of the ith lattice sites due to external harmonics component of 
the atom. U is the interaction energy and J is the tunneling coefficient. ,i j< >Σ denote a sum over 

nearest neighbor. The strength of the tunneling term is characterized by the hopping matrix element 
between adjacent sites i,j 

2 2
3 ( )( ( )) ( )
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Where  w(x-xi) is the single particle Wannier function localized to the ith lattice site, Vlat(x) is optical 
lattice potential and m is the mass of a single atom. The repulsion between two atoms on a single 
lattice site is given by on-site interaction matrix element U 

2 4 34( ) ( )aU w x d x
m
π

= ∫


                  (3) 

Where a is the scattering length of an atom. One first considers the standard homogeneous situation in 
which all Wi’s are equal. The last term of equation (1) becomes proportional to the number of bosons 
and may be dropped. The only remaining parameter of the model is the ratio U/J. When tunneling 
dominates the system in its ground state is super fluid while in the opposite case it becomes the Mott 
insulator. The border line between the two phases depends on the chemical potential. The effective 
chemical potential at each site is given by 

i iWµ µ= −                                   (4) 

Now to find the mean field ground state, one minimizes 

E G H N Gµ< >= −                       (5) 

Where N= i inΣ and G is Gutzwiller trial function 

1
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Where the number of parameters fn
(i) depends on the number of site as well as the maximal occupation 

of a given site nm. At each site I, one takes a solution for fn
(i)  corresponding to the homogeneous B-H 

model with the effective chemical potential μ. 

Now the difference of the on-site energy Wi and the chemical potential μ is expressed as 
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2
0 2i i

UW U xµ κ− = − + +                                    (7) 

Where xi is the position vector of site i. U and U0 are different taken to match the results with mean 
field solution with quantum Monte Carlo results23. The momentum distribution is given by24 

2 .( )

,
( ) i jik r r

k i i
i j

n k e a aφ − += < >∑                     (8) 

Where k is the wave vector, φ(k) is Fourier transform of Wannier site function. In order to 
characterize whether the state is closer to super fluid or Mott insulator, one defines the super fluid 
factor SFγ  

1
SF i ia a

N
γ += Σ < >< >                   (9) 

SFγ  =0.0 for pure MI state. 

Now, one applies time dependent variational principle25. One takes minimum of expression 

( ) ( ) ( )G t i H t N G t
t

µ∂
− +

∂
   =minimum          (10) 

Here H(t) is time dependent Hamiltonian . μ is also time dependent. ( )G t  is variational wave 

function. The minimum of equation (10) gives the set of first order differential equation for fn
(i)(t) 
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Where ( ) ( )i j jG t a G tφ < >= Σ                     (12) 

In equation (12) the sum as indicated by subscript in bracket is over the nearest neighbor only. Now 
when U and J change the chemical potential corresponding to the mean field solution with a given 
number of particles N also changes. The dynamics of μ depends upon the evolution of two states 1G  

and 2G  with different average number of particles. 


2 2 1 1 1N G N G N N G N G Nδ δ

∩
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The chemical potential at given time will be  
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This approach is used to find out the numerical results shown in table 

The freely expanding atomic cloud after some delay was recorded by a destructive absorption imaging 
which is reflected in the momentum distribution26. Since the absorption images are taken along two 
orthogonal axes the quantity measured in fact is the integrated momentum distribution which is given 
by 

( , )x y z kN k k dk nα∫                              (15) 

For clouds released from low optical lattice when tunneling dominates and the super fluid behavior is 
expected the signal reflects Bragg peaks due to interference of the atoms coming from different lattice 
sites. At increased lattice depth above 13Eγ (where Eγ is the recoil energy of the Rb atom) the 
interference maxima immersed in the incoherent background. This behavior is associated with the 
quantum phase transition from SF to MI phase. 

RESULT 

 In this paper using the theoretical formalism of Jakub Zakrzewski17,18, we have studied mean field 
dynamics of super fluid –insulator phase transition in a gas of ultra-cold atoms. We have evaluated 
mean field particle distribution (on site filling factor) n as s function of r/a and mean field atom density 
distribution (accumulation of sites) also as a function of r/a with different set of parameters. In table 
T1, we have shown the evaluated results of mean field particle distribution ‘n’ as a function of r/a with 
different sets of parameters; (a) U=24, U0=-11.08, κ=0.19531 (b) U=32, U0=-28.08, κ=0.19531 (c) 
U=80, U0 =-65, κ=0.97656. U is the interaction energy, U0 is the energy required to make a particle-
hole excitation, κ is the parameter to match the result of mean field with Quantum Monte Carlo 
results. 

 Our evaluated results indicate that mean particle distribution n decreases with r/a. the decrease is more 
sharply pronounced in case of (a) in comparison to (b) and (c) . In table T2, we again repeated the 
calculation by taking three different values of U, U0 and κ shown in (d), (e) and (f). In this case the 
value of n is large in (f) and small in (d). Here, also n decreases with r/a. In table T3, we have shown 
the evaluated results of mean field atom density distribution (occupation of sites) as a function of r/a. 
Here, we have taken three sets of parameters V, N and γSF known as lattice depth potential, Total 
number of particles, Eγ recoil energy, Super fluid factor. In calculation, we have taken four sets of 
parameters (a) V=9Eγ, N=99771, γSF=0.95 (b) V=13Eγ, N=99502, γSF=0.40 (c) V=16Eγ, N=95408, 
γSF=0.11 (d) V=22Eγ, N=94572, γSF=0.01. Here, the chemical potential μ has been adjusted to have the 
average number of atoms 105. This leads to more than two atoms per site in the center of the trap. 

 To characterize whether the state is closer to being super fluid or Mott insulator, we take super fluid 
factor γSF. The case V=9Eγ seems almost fully super fluid when V=13Eγ shows first traces of 
insulating phase. The transition is completed for significant fraction of sites at V=16Eγ while for 
deepest lattice V=22Eγ ,SF fraction is restricted to vary narrow regions separately different integer 
occupations. In table T4, we have given the interference peak widths (μm) as a function of energy 
difference between neighboring sites ΔE/Ћ due to potential gradient applied. Here, we have also taken 
four different sets of potential gradient (a) 10Eγ (b) 13 Eγ (c)16 Eγ and (d) 20 Eγ. 

1860 J. Chem. Bio. Phy. Sci. Sec. C, February 2015 – April 2015; Vol.5, No.2; 1856-1865 

 



A Theoretical…..                                                                                        Ashok Kumar  et al 

 The results shown in tableT4 are fits to the data based on two Gaussian peaks on the tops of the linear 
backgrounds. The obtained results can be interpreted as follows:  If excitations have been created 
during the application of the potential gradient at the potential depth V0=Vmax then one is not able to 
return to perfectly coherent super fluid state by taking the potential to a depth Vo=9 Eγ. Here, 
excitations in the Mott insulator phase will lead to excitations in the lower energy band in the super 
fluid case. These excitations are simply phase fluctuations between lattice sites. It also causes a 
broadening of the interference maxima in the interference pattern. Our theoretical results indicate that 
in case (a) V=10Eγ the state is completely super fluid state. In this case no peak values are seen. In 
case (b) V= 13 Eγ two peak values are observed as a function of ΔE/Ћ. Similarly in case of (c) and (d) 
two peak values are observed. These all results show the dynamical process of restoring coherence 
coming from Mott insulator Phase. There is some recent calculations27-30 which also reveals the same 
behavior. 

          

Table T1: An evaluated result of mean-field particle distribution ‘n’ as a function of r/a  with different 
sets of parameters (a) U=24, U0=-11.08, κ=0.19531 (b) U=32, U0=-28.08, κ=0.19531 (c) U=80, U0 =-

65, κ=0.97656. U is the interaction energy, U0 is the energy required to make a particle-hole 
excitation, κ is the parameter to match the result of mean field with Quantum Monte Carlo results. 

 

      r/a                                      n 

(a)                                    (b)        (c) 

1.0 0.562 1.000 1.000 

1.5 0.508 0.982 0.984 

2.0 0.476 0.917 0.942 

2.5 0.403 0.843 0.936 

3.0 0.365 0.796 0.904 

4.0 0.308 0.702 0.896 

5.0 0.284 0.654 0.845 

6.0 0.237 0.606 0.726 

7.0 0.186 0.532 0.637 

8.0 0.105 0.474 0.548 

9.0 0.084 0.286 0.406 

10.0 0.006 0.205 0.316 

12.0 0.000 0.005 0.006 

 

 

1861 J. Chem. Bio. Phy. Sci. Sec. C, February 2015 – April 2015; Vol.5, No.2; 1856-1865 

 



A Theoretical…..                                                                                        Ashok Kumar  et al 

TableT2: An evaluated result of mean-field particle distribution ‘n’ as a function of r/a ,the others 
parameters are (d) U=80, U0=-90.0, κ=1.03062 (e) U=80.0, U0=-120.08, κ=2.00375 (f) U=80, U0 =-

150.0, κ=1.75781. 

 

     r/a                                      n  

    (d)    (e)   (f) 

0.5 1.000 1.526 2.058 

1.0 0.985 1.438 1.897 

1.5 0.976 1.407 1.820 

2.0 0.966 1.328 1.769 

2.5 0.931 1.304 1.705 

3.0 0.892 1.286 1.658 

3.5 0.824 1.232 1.606 

4.0 0.786 1.205 1.584 

5.0 0.723 1.195 1.532 

6.0 0.683 1.167 1.505 

7.0 0.636 0.678 0.652 

8.0 0.432 0.439 0.504 

9.0 0.324 0.340 0.368 

10.0 0.242 0.228 0.254 

12.0 0.017 0.007 0.090 
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TableT3: An evaluated result of mean-field atom density distribution (accumulation of sites) as a 
function of r/a. others parameters are (a) V=9Eγ, N=99771, γSF=0.95 (b) V=13Eγ, N=99502, γSF=0.40 
(c) V=16Eγ, N=95408, γSF=0.11 (d) V=22Eγ, N=94572, γSF=0.01.Here three sets of parameters V, N 
and γSF are known as lattice depth potential, Total number of particles, Eγ recoil energy, Super fluid 

factor 

 r/a                                        Atom density distribution 

  (a)   (b)   (c)  (d) 

2 2.232 2.142 2.058 2.163 

4 2.156 2.056 1.942 2.104 

5 2.084 1.972 1.906 1.986 

10 1.892 1.904 1.854 1.954 

15 1.806 1.844 1.786 1.902 

18 1.546 1.607 1.422 1.567 

20 0.862 1.538 1.368 1.524 

22 0.588 0.675 0.954 1.496 

24 0.505 0.627 0.836 1.476 

25 0.462 0.508 0.655 1.443 

27 0.404 0.422 0.624 1.402 

30 0.327 0.365 0.596 0.176 

35 0.158 0.278 0.243 0.104 

40 0.053 0.074 0.084 0.074 
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TableT4: An evaluated result of interference peak width(μm) as a function of energy difference 
between neighboring lattice sites ΔE/Ћ due to potential gradient applied (Vmax=10Eγ (b) 13Eγ (c) 16Eγ 

(d) 20 Eγ 

 

ΔE/Ћ (KHz)                    Interference peak width (μm) 

        (a)     (b)    (c)     (d) 

0 10.25 10.86 16.25 18.57 

1.0 15.68 12.58 18.84 20.26 

1.5 20.46 22.47 32.35 28.42 

2.0 28.75 38.15 28.20 17.29 

2.5 33.26 30.26 22.16 23.25 

3.0 37.49 32.39 24.58 24.16 

3.5 41.86 37.15 23.86 27.89 

4.0 43.24 30.42 21.29 22.42 

4.5 44.59 29.59 22.58 23.67 

6.0 45.16 32.57 23.09 20.34 

6.5 47.27 33.11 28.13 18.29 

7.0 49.58 39.56 29.24 17.56 

8.0 55.06 38.29 26.12 24.42 

 

CONCLUSION 

 From the above theoretical analysis and investigations, we have come across the following 
conclusions. 

(1) In the theoretical study of quantum phase transition from a super fluid to a Mott insulator in a gas 
of ultra cold atoms, we observed that as the potential depth of the lattice is increased, a transition is 
observed from a super fluid to Mott insulator phase. In the super fluid phase each atom is spread out-
over the entire lattice with long range phase coherence. But in the insulating phase atoms are localized 
at individual lattice sites with no phase coherence across the lattice. This phase is characterized by a 
gap in the excitation spectrum. 

(2) Our theoretical calculation show that the mean field Gutzwiller approximation allows ones to 
simulate the dynamics of inhomogeneous Bose-Hubbard model and calculates the mean-field particle 
density distribution as a function of r/a. The obtained results are in good agreement with the quantum 
Monte Carlo simulation results. 
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