Journal of Chemical, Biological and Physical Sciences

An International Peer Review E-3 Journal of Sciences

Available online atwww.jcbsc.org
Section C: Physical Sciences

The Pseudo Inverse of a Partitioned Matrix

$$
\left.\boldsymbol{M}=\left[\begin{array}{cc}
\boldsymbol{A}_{11} & {\left[\begin{array}{ll}
0 & 0
\end{array}\right]} \\
{\left[\begin{array}{c}
\boldsymbol{A}_{21} \\
\boldsymbol{A}_{31}
\end{array}\right]}
\end{array} \begin{array}{cc}
\boldsymbol{A}_{22} & \boldsymbol{A}_{23} \\
\boldsymbol{A}_{32} & \boldsymbol{A}_{33}
\end{array}\right]\right]
$$

G.Ramesh ${ }^{1}$ and B.K.N. Muthugobal ${ }^{2}$
${ }^{1}$ Ramanujan Research Centre,Department of Mathematics, Government Arts College (Autonomous),Kumbakonam .

${ }^{2}$ Bharathidasan University constituent Arts and Science College, Nannilam.
Tamil Nadu - India.

Received: 15 March 2015; Revised: 26 March 2015; Accepted: 4 April 2015

INTRODUCTION

If A_{11} is an mxn matrix over the complex field, then the Pseduo-inverse of A_{11}, denoted A_{11}^{\dagger}, is an nxm matrix such that
$A_{11} A_{11}^{\dagger} A_{11}=A_{11}$
$A_{11}^{\dagger} A_{11} A_{11}^{\dagger}=A_{11}^{\dagger}$
$\left(A_{11} A_{11}^{\dagger}\right)^{*}=A_{11} A_{11}^{\dagger}$
$\left(A_{11}^{\dagger} A_{11}\right)^{*}=A_{11}^{\dagger} A_{11}$
Any matrix which satisfies equation (1.1) is called an 1-inverse of A_{11}. A generalized inverse of A_{11} will indicate a matrix X satisfying some of the conditions (1.1) through (1.4).

If $M=\left[\begin{array}{cc}A_{11} & {\left[\begin{array}{ll}0 & 0\end{array}\right]} \\ {\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]} & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]}\end{array}\right]$ and M is invertible, then M^{-1} is lower block triangular. It is natural then to
ask the following question.
For an mxn partitioned matrix
$M=\left[\begin{array}{cc}A_{11} & {\left[\begin{array}{ll}0 & 0\end{array}\right]} \\ {\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]} & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]}\end{array}\right]$
when is the Pseduo-inverse also lower block triangular? C. Meyer has given necessary and sufficient conditions for this question in [2].

We first give a formula for computing M^{\dagger}, and then we obtain Meyer's result as a corollary to this general expansion. We also examine some other cases which occur rather naturally.

In [3], Meyer considers square matrices which are upper triangular and he determines conditions for a generalized inverse to be upper triangular. Moreover, he gives explicit formulas for determining these inverses in some special cases.

Throughout our paper, we shall restrict our attention (except for a fleeting reference to 1 -inverses) to the Pseduo-inverse. We shall use the following well-known facts in our work [e.g., see 4].
$A_{11}^{\dagger}=A_{11}^{*}\left(A_{11} A_{11}^{*}\right)^{\dagger}=\left(A_{11}^{*} A_{11}\right)^{\dagger} A_{11}^{*}$
$\left(A_{11} A_{11}^{*}\right)^{\dagger}=\left(A_{11}^{\dagger}\right)^{*} A_{11}^{\dagger}$
If $\mathrm{N}\left(\mathrm{A}_{11}\right)$ denotes the null column space of A_{11}, then $N\left(A_{11}\right) \subset N(B)$ if and only if $B=B A_{11}^{\dagger} A_{11}$.

Lemmas: In order to prove our Theorem, we need the following lemmas.

Lemma 2.1

For M partitioned as in (1.5), we have $M^{\dagger}=\left[\begin{array}{cc}A_{11}^{\dagger} & {\left[\begin{array}{c}A_{12} \\ A_{13}\end{array}\right]^{*} L^{\dagger}} \\ 0 & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*}}\end{array}\right]$
$L=\left[\begin{array}{l}A_{12} \\ A_{13}\end{array}\right]\left[\begin{array}{l}A_{12} \\ A_{13}\end{array}\right]^{*}+\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*}$, if and only if $\left[A_{11}\right]\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=0$

Proof:

Assume $M^{\dagger}=\left[\begin{array}{cc}A_{11}{ }^{\dagger} & {\left[\begin{array}{c}A_{12} \\ A_{13}\end{array}\right]^{*} L^{\dagger}} \\ 0 & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*} L^{\dagger}}\end{array}\right]$ then by (1.1), we obtain
$\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] A_{11}{ }^{\dagger} A_{11}+L L^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$
By the definition of L , we have $\mathrm{N}[\mathrm{L}] \subseteq \mathrm{N}\left[\begin{array}{l}A_{12} \\ A_{13}\end{array}\right]^{*}$, so $L L^{+}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$
Then (2.2) implies $\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] A_{11}{ }^{\dagger} A_{11}=0$, and hence $\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] A_{11}{ }^{\dagger}=0$. But $\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] A_{11}{ }^{\dagger}=0$ is equivalent to
$A_{11}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}=0$, so the necessity is Complete. For the sufficiency, we will use relation (1.6) we have $\mathrm{M}^{\dagger}=M^{*}\left(\begin{array}{ll}M & M^{*}\end{array}\right)^{\dagger}$, so
$\left[\begin{array}{cc}A_{11} & {[0]} \\ {\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]} & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]}\end{array}\right]^{\dagger}=\left[\begin{array}{cc}A_{11}^{*} & {\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}} \\ {[0]} & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]}\end{array}\right]\left[\begin{array}{cc}A_{11} A_{11}^{*} & 0 \\ 0 & {\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}+\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*}}\end{array}\right]^{\dagger}$
Since $A_{11}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=0$.
Thus $M^{\dagger}=\left[\begin{array}{cc}A_{11}{ }^{*}\left(\begin{array}{ll}A & \left.A_{11}{ }^{*}\right)^{\dagger}\end{array}\right. & {\left[\begin{array}{l}A_{21} \\ A_{31}\end{array} L^{*}\right.} \\ 0 & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*} L^{\dagger}}\end{array}\right]$,
Which gives the desired result

Lemma 2.3:

If M is partitioned as in (1.5), then

$$
\begin{aligned}
& M^{\dagger}=\left[\begin{array}{cc}
K^{\dagger} A_{11}^{*} & K^{\dagger}\left[\begin{array}{l}
A_{21} \\
A_{31}
\end{array}\right]^{*} \\
0 & {\left[\begin{array}{ll}
A_{22} & A_{23}{ }^{\dagger} \\
A_{32} & A_{33}
\end{array}\right]^{\dagger}}
\end{array}\right] \text { where } K=A_{11}{ }^{*} A_{11}+\left[\begin{array}{l}
A_{21} \\
A_{31}
\end{array}\right]\left[\begin{array}{l}
A_{21} \\
A_{31}
\end{array}\right] \text { if and only if } \\
& {\left[\begin{array}{l}
A_{21} \\
A_{31}
\end{array}\right]^{*}\left[\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right]=0}
\end{aligned}
$$

Proof:
For the necessity, use (1.1) to obtain $\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*} K^{\dagger} \mathrm{K}+\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$,
which implies $\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]=0$. For the Sufficiency, again we employ (1.6).
The Pseduo-Inverse of $\mathrm{M}=\left[\begin{array}{cc}A_{11} & {[0} \\ 0 & 0\end{array}\right]\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]$ we first determine the Pseduo-Inverse of M given in (1.5).

Theorem:
Let $\mathrm{M}=\left[\begin{array}{cc}A_{11} & {\left[\begin{array}{ll}0 & 0\end{array}\right]} \\ {\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]} & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]}\end{array}\right]$.
Then $M^{\dagger}=\left[\begin{array}{c}{\left[K^{+} A_{11}^{*}-K^{+}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] F\right.} \\ K^{+}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]^{*}-K^{+}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H \\ F\end{array}\right]$
$K=A_{11}{ }^{*} A_{11}+\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$,

$$
D=-A_{11} K^{\dagger}\left[\begin{array}{l}
A_{21} \\
A_{31}
\end{array}\right]^{*}\left[\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right]
$$

$E=\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]-\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]$
$T=D^{*} D+E^{*} E$,
$\mathrm{S}=\mathrm{K}^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\left[I-T^{\dagger} T\right]$,
$\mathrm{F}=\mathrm{T}^{\dagger} 0^{*}+\left[I-T^{\dagger} T\right]\left[I+S^{*} S\right]^{-1}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right] K^{\dagger}\left[K^{\dagger} A_{11}{ }^{*}-K^{\dagger}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{cc}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] T^{\dagger} 0^{*}\right]$,
And
$H=\mathrm{T}^{\dagger} E^{*}+\left[I-T^{\dagger} T\right]\left[I+S^{*} S\right]^{-1}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] K^{\dagger}\left[K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]-K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] T^{\dagger} E^{*}\right]$

Proof:

Cline [1] has shown that if $\mathrm{U}^{*}=\mathrm{U}$, then
$(U+V)^{\dagger}=U^{\dagger}+\left(I-U^{\dagger} V\right)\left[G^{\dagger}+\left(I-G^{\dagger} G\right) \quad Q V^{*}\left(U^{\dagger}\right)^{*} \quad U^{\dagger}\left(I-V G^{\dagger}\right)\right]$,
Where $G=V-U U^{\dagger} V, \mathrm{Q}=\left[I+\left(I-G^{\dagger} G\right) \quad V^{*}\left(U^{\dagger}\right)^{*} U^{\dagger} V\left(I-G^{\dagger} G\right)\right]^{-1}$, now,
Let $U=\left[\begin{array}{cc}A_{11} & 0 \\ {\left[\begin{array}{l}A_{11} \\ A_{31}\end{array}\right]} & 0\end{array}\right]$ and $V=\left[\begin{array}{cc}0 & 0 \\ 0 & {\left[\begin{array}{cc}A_{11} & A_{23} \\ A_{32} & A_{33}\end{array}\right]}\end{array}\right]$
Then $\left[\begin{array}{cc}A_{11} & 0 \\ {\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]} & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]}\end{array}\right]=U+V$
And $\mathrm{UV}^{*}=0$. Hence, clines theorem is applicable by Lemma 2.3, $U^{\dagger}=\left[\begin{array}{cc}K^{\dagger} A_{11}^{*} & K^{\dagger}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]^{*} \\ 0 & 0\end{array}\right]^{*}$,
Where $\mathrm{K}=\mathrm{A}_{11}{ }^{*} A_{11}+\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$ Thus, $G=\left[\begin{array}{ll}0 & -A_{11} K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] \\ 0\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]-\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] K^{+}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\end{array}\right]$,

Let $0=-A_{11} K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]$ and $\mathrm{E}=\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]-\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]$
Then we have $\mathrm{G}=\left[\begin{array}{ll}0 & D \\ 0 & E\end{array}\right]$
Therefore, by Lemma 2.1 and the fact $G^{\dagger}=\left[G^{*+}\right]^{*}$, we get $G^{\dagger}=\left[\begin{array}{cc}0 & 0 \\ T^{\dagger} D^{*} & T^{\dagger} E^{*}\end{array}\right]$
Where $\mathrm{T}=D^{*} D+E^{*} E$.
Hence, $I-G^{\dagger} G=\left[\begin{array}{cc}I & 0 \\ 0 & I-T^{\dagger} T\end{array}\right], U^{\dagger} V\left[I-G^{\dagger} G\right]=\left[\begin{array}{cc}0 & K^{\dagger}\left[\begin{array}{c}A_{22} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{cc}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\left(I-T^{\dagger} T\right) \\ 0 & 0\end{array}\right]$
And $\mathrm{Q}=\left[\begin{array}{cc}I & 0 \\ 0 & {\left[I+S^{*} S\right]^{-1}}\end{array}\right]$, where $\mathrm{S}=K^{\dagger}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{cc}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\left(I-T^{\dagger} T\right)$, and
$\mathrm{I}-\mathrm{VG}^{\dagger}=\left[\begin{array}{cc}I & 0 \\ -\left[\begin{array}{cc}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] T^{\dagger} 0^{*} & I-\left[\begin{array}{cc}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] T^{\dagger} E^{*}\end{array}\right]$
Now, $U^{\dagger}\left(I-V G^{\dagger}\right)\left[\begin{array}{c}K^{\dagger} A_{11}^{*}-K^{\dagger}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] T^{\dagger} D^{*} \\ 0\end{array} K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}-K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] T^{\dagger} E^{*}\right]$,
So $G^{\dagger}+\left[I-G^{\dagger} G\right] Q V^{*}\left[U^{\dagger}\right]^{*} U^{\dagger}\left[I-V G^{\dagger}\right]=\left[\begin{array}{cc}0 & 0 \\ F & H\end{array}\right]$,
Where

$$
\begin{aligned}
& F=T^{\dagger} D^{*}+\left(I-T^{\dagger} T\right)\left(I+S^{*} S\right)^{-1}\left[\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right]^{*}\left[\begin{array}{l}
A_{21} \\
A_{31}
\end{array}\right] K^{\dagger}\left[K^{\dagger} A_{11}^{*}-K^{\dagger}\left[\begin{array}{l}
A_{21} \\
A_{31}
\end{array}\right]^{*}\left[\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right] T^{\dagger} D^{*}\right] \\
& H=T^{\dagger} H^{*}+\left(I-T^{\dagger} T\right)\left(I+S^{*} S\right)^{-1}\left[\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right]^{*}\left[\begin{array}{l}
A_{21} \\
A_{31}
\end{array}\right] K^{\dagger}\left[K^{\dagger} A_{11}^{*}-K^{+}\left[\begin{array}{l}
A_{21} \\
A_{31}
\end{array}\right]^{*}\left[\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right] T^{\dagger} E^{*}\right]
\end{aligned}
$$

And $I-U^{\dagger} V=\left[\begin{array}{cc}I & -K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] \\ 0 & I\end{array}\right]$
Therefore
$\left(I-U^{\dagger} V\right)\left[G^{\dagger}+\left(I-G^{\dagger} G\right) Q V^{*}\left[U^{\dagger}\right]^{*} U^{\dagger}\left(I-V G^{\dagger}\right)\right]=$
$\left[\begin{array}{cc}{\left[K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] F\right.} & \left.-K^{\dagger}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H\right], \\ F & H\end{array}\right.$
And finally we get
$\left[\begin{array}{cc}A_{11} & {\left[\begin{array}{ll}0 & 0\end{array}\right]} \\ {\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]} & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]}\end{array}\right]^{\dagger}$
$=(U+V)^{\dagger}=\left[\begin{array}{c}-K^{\dagger} A_{11}{ }^{*}-K^{\dagger}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] F \\ F\end{array}-K^{+}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]-K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H\right.$ H H,
In [2, p. 748, Theorem 6], c. Meyer has given a formula for (1)-inverses of partitioned upper block triangular matrices. Our theorem also accomplishes this task, since the Pseduo is clearly a (1)-inverse. However, since (1)-inverses are not unique, our results are, in general, different from those of Meyer. For example, if
At this point, we note the following identities, whose proofs are straight forward.
$T=\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*} E$
If $\mathrm{R}=\mathrm{I}+\mathrm{S}^{*} S$, then $T^{\dagger} T R^{-1}=R^{-1} T^{\dagger} T$
$D^{*} A_{11}+E^{*}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=0$
$\mathrm{F}=T^{\dagger} D^{*}+\mathrm{R}^{-1} S^{*}\left[K^{\dagger} A_{11}{ }^{*}-K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] T^{\dagger} D^{*}\right]$
$H=T^{\dagger} E^{*}+\mathrm{R}^{-1} S^{*}\left[K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]-K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] T^{\dagger} E^{*}\right]$

We shall assume throughout the remainder of the paper that M is pseudo partitioned as in (1.5) moreover, we now consider necessary and sufficient conditions for M^{\dagger} to be upper block triangular, lower block triangular, and list at the end of the paper some special for us.

Corollary 3.6

$M^{\dagger}=\left[\begin{array}{ll}X & Y \\ O & Z\end{array}\right]$ and only if $S^{*} K^{\dagger} A_{11}^{*}=0$ and $D^{*}=0$, where S, K, and D are as defined in the theorem,

Proof:

From the Theorem, we can see that $M^{\dagger}=\left[\begin{array}{ll}X & Y \\ O & Z\end{array}\right] \Leftrightarrow F=0$.
But from (3.4), we have

$$
R F=R T^{\dagger} D^{*}+S^{*} K^{\dagger} A_{11}{ }^{*}-S^{*} K^{\dagger}\left[\begin{array}{l}
A_{21} \tag{3.7}\\
A_{31}
\end{array}\right]^{*}\left[\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right] T^{\dagger} D^{*}
$$

By the definition of F , we have
$T F=T T^{\dagger} D^{*}=D^{*}$ since $N(T) \subset N(\cap)$
Thus F=0 implies $D^{*}=0$.
From (3.7), we get, $S^{*} K^{\dagger} A_{11}{ }^{*}=0$ and $D^{*}=0 \Leftrightarrow F=0$
This completes the Proof
Note.
$F=0 \Rightarrow T=E^{*} E \Rightarrow T^{\dagger} E^{*}=E^{\dagger} \Rightarrow H=E^{\dagger}+\mathrm{R}^{-1} S^{*}\left[K^{\dagger}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]^{*}-K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] E^{\dagger}\right]$
Corollary 3.8 [2, p. 746 Theorem 4]
$M^{\dagger}=\left[\begin{array}{ll}X & Y \\ O & Z\end{array}\right]$
If and only if $N\left(A_{11}\right) \subset N\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$ and $N\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*} \subset N\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}$. In this case, we have
$\left.M^{\dagger}=\left[\begin{array}{cc}A_{11}{ }^{\dagger} & 0 \\ -\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] A_{11}^{\dagger}\end{array} \begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\right]$
Proof from the theorem, we see that
$M^{+}=\left[\begin{array}{ll}X & 0 \\ Y & Z\end{array}\right]$
If and only if $K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{cc}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H$. If $K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}=K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H$,
Then $K K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=K K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H$, and we have
$\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}=\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]$. Now $T H=T T^{\dagger} E^{*}=E^{*}$
Implies $\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*}$ EH $=E^{*}$. Thus $\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H=\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*}$ and using(1.6)
We get $\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H=\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}$, and $\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H=\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}$,
hence
$\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}=\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H=\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}$,
And $N\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*} \subseteq N\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$,
It can be shown that $H=T^{\dagger} E^{*}$ and $F=T^{\dagger} D^{*}$ If $K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}=K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H$.
Thus
$F A_{11}+H\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]=T^{\dagger} D^{*} A_{11}+T^{\dagger} E^{*}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]=T^{\dagger}\left[D^{*} A_{11}+E^{*}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]\right]=0$
By (3.3), and we get
$F A_{11}=-H\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$
Note next that
$\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] K^{\dagger} A_{11}^{*} A_{11}-\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] F$
$A_{11}=\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] K^{\dagger} A_{11}^{*} A_{11}-\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\left[-H\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\right]$ by (3.9)
This last term is the same as $\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] K^{\dagger} K=\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$
Finally,
$\left[\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right] K^{\dagger} A_{11}{ }^{*} A_{11}-\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right] K^{\dagger}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{cc}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] F A_{11}\right] A_{11}{ }^{\dagger} A_{11}=\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right] A_{11}^{\dagger} A_{11}$ yields
$\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] A_{11}^{\dagger} A_{11}$, which is equivalent to $N\left(A_{11}\right) \subseteq\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$. On the other hand, it is straight forward to verify that when $N\left(A_{11}\right) \subseteq N\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]$ and
$N\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*} \subseteq N\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right]$, then $M^{\dagger}=\left[\begin{array}{cc}{ }^{\dagger} & 0 \\ -\left(\begin{array}{cc}A_{22} & A^{23} \\ A_{32} & A_{33}\end{array}\right)^{\dagger}\binom{A_{21}}{A_{31}} A_{11}^{\dagger} & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}}\end{array}\right]$
We note that if m is invertible (ie A_{11} and $\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]$ are invertible), then
$M^{-1}=\left[\begin{array}{cc}A_{11}{ }^{-1} & 0 \\ \left.-\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{-1}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] A_{11}{ }^{-1}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{-1}\right]\end{array}\right.$
Suppose $A_{11}=0$. Then M^{\dagger} is lower block triangular if and only if $\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=0$. There are many special cases which can be derived from corollary 3.8.
In conclusion, the following special results can be obtained.
If $K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}=K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] H$, then $K^{\dagger} A_{11}{ }^{*}-K^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right] F=A_{11}{ }^{\dagger}$,
$F=-\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] A_{11}{ }^{\dagger}, H\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]=T^{\dagger} T, H=\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}$, and $S=0$
$M^{\dagger}=\left[\begin{array}{cc}A_{11}{ }^{\dagger} & {\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{\dagger}} \\ 0 & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]}\end{array}\right]$ if and only if $\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]=0$ and $A_{11}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}=0 \ldots$
$M^{\dagger}=\left[\begin{array}{cc}A_{11}{ }^{\dagger} & D^{\dagger} \\ 0 & {\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}-\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right] D^{\dagger}}\end{array}\right]$,
where $\mathrm{D}=\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]-\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$
If and only if $A_{11}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}=0$ and $\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{c}A_{21} \\ A_{31}\end{array}\right] D^{+}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] \ldots$
$M^{\dagger}=\left[\begin{array}{c}A_{11}{ }^{\dagger} \\ \rho\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger} \\ 0\end{array}\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}-\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right] \rho\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\right]$
Where $\rho=Q^{-1}\left[\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]^{*}\right]$ and $Q=I+\left[\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\right]^{*}\left[\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{\dagger}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]\right]$
If and only if $A_{11}\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]=0$ and $N\left[\begin{array}{ll}A_{22} & A_{23} \\ A_{32} & A_{33}\end{array}\right]^{*} \subset N\left[\begin{array}{l}A_{21} \\ A_{31}\end{array}\right]$

REFERENCE

1. Cline; R.E.Representation of the Generalized Inverse of Sums of Matrices . SIAMJ Number. Anal., Ser. B.2; 1965, 99-114.
2. Meyer, Carl; Generalized Inverse of Block Triangular Matrices, SIAM J. Applied Math; 1970, 19, 741 - 750.
3. Meyer, Carl, Generalized Inverse of Triangular Matrices, SIAMJ. Appl. Math; 1970, 18, 401-406.
4. C.R.Rao and S.K.Mitra; Generalized Inverse of Matrices and its Applications, John Wiley and Sons, Inc., Newyork; 1971, 21, 67.

Author for Correspondence: B.K.N. Muthugobal

Bharathidasan University constituent Arts and Science College, Nannilam.
Tamil Nadu - India.

