Journal of Chemical, Biological and Physical Sciences An International Peer Review E-3 Journal of Sciences Available online at www.jcbsc.org Section C: Physical Sciences CODEN (USA): JCBPAT Research Article # Calculation of the Reduced Transition Probabilities M (E2) for even-even Tungsten nuclide (74W)(A=180-186) Dr. Sameera A. Ebrahiem, Shaimaa A. Abass, Saja A. Ahmed, Nebras T. Abd-Al-Hameed Physics Department - College of Ibn Al-Haytham - University of Baghdad Received: 4 July 2015; Revised: 20 July 2015; Accepted: 25 July 2015 **Abstract:** In the present work, By using the half life time for (W-74) isotopes for eveneven from Ferston we calculated the electric quadruple transition and find the relation between number of neutron and M (E2) $|^2_{w.u}\downarrow$ for gamma ray from 2^+ to 0^+ . By using MATLAB program we find empirical formula for these relation and compare these data with global. The calculated reduced transition probabilities B (E2) e2b2 \uparrow values are compared with that of experimental and theoretical predications for $_{74}W$ nuclide listed and plotted and compares with SSANM and FRDM and with Experimental values of Global. **Keyword**: The electric quadruple transition, reduced transition probabilities B (E2)e2b2↑ #### INTRODUCTION The Gamma Ray Transition: Gamma-ray is the electromagnetic of radiation common of an isomeric transition from upper energy state of the nucleus to the lower energy by emission . For γ -transition from initial state of total angular momentum J_i and parity π_i ¹to a final state of total angular momentum J_f and parity π_f , the transition by emission of a single 2^L -pole quantum is possible if ¹ $$|J_i - J_f| \le L \le J_i + J_f \tag{1}$$ for L≠0 Where L is the angular momentum of the γ -transition which is defined as a multipolarity³. In such transition, the parity change of electric radiation (EL) is given by $$\pi_i \pi_i = (-1)^L \tag{2}$$ The theoretical life time of γ -ray transition can be compared with the experimental value to obtain reduced transition probability, i.e. Reduced transition probability = $$\frac{T_{th}}{T_{exp}}$$ (3) $$T = \frac{1}{\tau} \tag{4}$$ Where T is defined as the transition probability, the half-life time $t_{1/2}$ and mean life time T are related by the following relation⁵ $$t_{1/2} = T \ln 2 \tag{5}$$ To calculated the electric quadruple transition strengths $|M|(E2)|^2_{w,u}\downarrow$ for gamma ray from 2^+ to 0^+ have been calculated by using Ferston⁵ to get half-life for first exited state as follow: $$\tau = t_{1/2} \ln(2)$$ where τ is mean life time The total width for gamma decay is given by⁶: $$\Gamma_{\gamma} = \sum \Gamma_{\Gamma 1} \tag{6}$$ Where $$\Gamma_{\gamma} \tau \approx \hbar = 0.658212 \times 10^{-15} \text{ eV.S}$$ (7) The gamma ray transition strength $|M(E2)|^2$ is defined as⁷ $$|\mathbf{M}(E2)|^2 = \frac{\Gamma \gamma}{\Gamma \nu w.u.} \tag{8}$$ Where Γ (E2)_{w.u.} the Weisskopf single –particle widths **Theoretical predictions:** The relation between the reduced transition probabilities, B (EL) \downarrow = B (EL, 2 \rightarrow 1) and B (EL) \uparrow = B (EL, 1 \rightarrow 2), is given by⁷: $$B (EL) \downarrow = \frac{2J_1+1}{2J_2+1} B (EL) \uparrow \tag{9}$$ The best theoretical models to calculate B (E2) \uparrow are: a- Single-Shell Asymptotic Nilsson Model SSANM one of the simplest theoretical model for understanding $B(E2)\uparrow$, which is based on assuming the nucleus as deformed as it can be in a single shell .This model has been discussed in detail in ref.⁸ where the $B(E2)\uparrow$ values in units of e^2b^2 are given by : B (E2) $$\uparrow = \frac{5}{167} [e^2 Q_0]^2$$ (10) $(Q_0 \neq 0)$ Where Q_0 is the intrinsic quadrupole momentum². b- Finite –Range Droplet Model (FRDM): in the (FRDM) 6 the nuclear ground state shapes are calculated by minimizing the nuclear potential energy function with respect to ε_2 , ε_3 , ε_4 and ε_6 shape degree of freedom. More details about this model are in ref. 9 . The B (E2) values are basic experimental quantities that do not depend on nuclear models 9 . This (Weisskopf) single-particle B (E2) \uparrow value is given by 6 B (E2) $$\uparrow = 2.6E^{-1}Z^{2}A^{-2/3}$$ (11) #### RESULT AND DISCUSSIONS By using half-life $(t_{1/2})$,energy of first excited state and γ_o -energy from Ferston³.we calculated the electric quadrupole transition strengths $|M(E2)|^2_{w.u.\downarrow}$ for γ_o -transition as a function of neutron number (N) for even nuclei of isotopic (106-112) for Tungsten ($_{74}W$) the results of calculations of mean life (τ), the total width for gamma decay (Γ_γ) ,gamma Weisskopf ($\Gamma_{w.u.}$) and $|M(E2)|^2_{w.u.\downarrow}$ are presented for all even nuclei listed in table (1). Transition strengths $|M(E2)|^2_{w.u.\downarrow}$ of γ_o -transition from $2^+ \rightarrow 0^+$ with partial gamma widths are increased with increased number of neutron as shown in **Table (1)**. **Table (1):** Transition strengths $|M|(E2)|^2_{W.U.} \downarrow \text{ of } \gamma_o$ —transition from $2^+ \rightarrow 0^+$ with partial gamma widths in W.u. Γ (E2)_{wk.},total gamma width and mean life time τ for the first exited state of $_{74}W$ isotope (present work). | A | N | E _i (keV) [3] | E _{γ(} keV) [3] | t _{1/2} (ps) [3] | T(s) P.Work | Γ _{tot} x (eV) P.Work | Γ(E2) _{w.u.} (eV) P.Work | M(E2) ² _{W.U.} ↓
P.Work | |-----|-----|--------------------------|--------------------------|---------------------------|-------------------------|--------------------------------|-----------------------------------|---| | 180 | 106 | 103.557 | 103.557 | 1280(5) | 1.847x10 ⁻⁹ | 3.5636x10 ⁻⁷ | 5.7986x10 ⁻¹⁰ | 614.5579 | | 182 | 108 | 100.1060 | 100.10595 | 1381(10) | 1.9928x10 ⁻⁹ | 3.3030x10 ⁻⁷ | 4.9674x10 ⁻¹⁰ | 664.9338 | | 184 | 110 | 111.208 | 111.208 | 1251(12) | 1.8052x10 ⁻⁹ | 3.6462x10-7 | 8.5278x10 ⁻¹⁰ | 427.5683 | | 186 | 112 | 122.33 | 122.30 | 1036(10) | 1.4949x10 ⁻⁹ | 4.4029x10 ⁻⁷ | 13.917x10 ⁻¹⁰ | 316.3667 | In **Fig.** (1) We observed that the relation between mass number and the electric quadrupole transition strengths $|M(E2)|^2_{w,u}\downarrow$ **Fig. (1):** Relation between neutron number and M (E2) $|^2_{W.U.} \downarrow$ for Tungsten The calculated reduced transition probabilities B (E2) e2b2 ↑ values are compared with that of experimental and theoretical predications for ₇₄W nuclide listed and plotted and compares with SSANM and FRDM and with Experimental values of Global. **Table (2):** The calculated reduced transition probabilities B (E2) e2 b^2 \uparrow values are compared with that of experimental and theoretical predications for $_{74}W$ nuclide. | A | N | E _i (keV) | E _γ (KeV) | $B(E2;0_1^+ \rightarrow 2_1^+)e^2b^2$ | | | | | |-----|-----|----------------------|----------------------|---------------------------------------|--------------------|-------|-------|--| | | | [3] | [3] | Experimental values | Theoretical values | | | | | | | | | of Present work | | SSANM | FRDM | | | | | | | Global [6] | | [6] | [6] | | | 180 | 106 | 103.557 | 103.557 | 4.3(7) | 4.3126 | 3.914 | 4.68 | | | 182 | 108 | 100.1060 | 100.10595 | 4.4(8) | 4.4286 | 3.72 | 4.668 | | | 184 | 110 | 111.208 | 111.208 | 3.9(7) | 3.9575 | 3.532 | 3.956 | | | 186 | 112 | 122.33 | 122.30 | 3.5(6) | 3.5727 | 3.344 | 3.604 | | Fig. (2): Relation between neutron number and B (E2) for Tungsten #### REFERENCE - 1. ENGE "introduction to nuclear physics", Translated by DR.AASIM AZOOZ P, 342. - 2. A.J. Hussein, "the study of transition strength $|M(E2)|^2_{w.u}\downarrow$ for gamma ray as a function of atomic number $18 \le Z \le 44$ "M.Sc, 2010. - 3. R. B. Firestons and V. S. Shirley, "Table of isotopes eighth edition", Newyork, 1999. - 4. Y. H. Jaber, "The study of electric Quadrupole Transition (E2)for some even –even Nuclei", M.Sc.,thesis, university of Baghdad, 2009. - 5. J. K. Tu Li, "Evaluated nuclear structure data file", Amanul for preparation of data set ,electronic education by Jay Z., James, 1992. - S. Raman, C. W. Nestor and J. R. Tikkanen, "Transition probability from the ground to the first excited 2⁺ state of even-even nuclides", *Atomic Data and Nuclear Data. Tables*, 2001, 78, 1, 5-49-100. 7. P. J. Brussard and P. W. M. Gloudemans, "Shell –Model Application in Nuclear Spectroscopy", North .Holland, publishing company, *Amsterdam ,New York, Oxford*, 1977. - 8. S. Raman, C. W. Nestor, S. jr. Karane and K. H. Bhatt, *Phys. Rev.*, 1991, C43, 556 - 9. J. R. Moller Pand Nix, "Atomic Data and Nuclear Data Table", 1988, C39, 213. ### Corresponding author: Intehaa Ahmed Mohammed; Department of Physics, College of Ibn AL-Haytham, University of Baghdad, Iraq