Journal of Chemical, Biological and Physical Sciences

An International Peer Review E-3 Journal of Sciences

Available online at www.jcbsc.org Section C: Physical Sciences

CODEN (USA): JCBPAT

Research Article

Peristaltic Flow of A Couple Stress Fluid in an Inclined Channel under the Effect of Magnetic Field through a Porous Medium by Adomian Decomposition Method

V.P. Rathod, Navrang Manikrao and Laxmi Devindrappa

Department of studies and Research in Mathematics, Gulbarga University, Gulbarga-585106, Karnataka, India

Received: 06 February 2016; Revised: 29 February 2016; Accepted: 11 March 2016

Abstract: The present paper investigates the peristaltic motion of a couple stress fluid in a two dimensional inclined channel with the effect of magnetic field through a Porous Medium by Adomian decomposition method. The effects of various physical parameters on velocity, pressure gradient and friction force have been discussed & computed numerically. The effects of various key parameters are discussed with the help of graphs.

Keywords: Peristaltic transport, Couple stress fluid, Magnetic field, Porous Medium and inclined channel.

INTRODUCTION

Peristalsis is known to be one of the main mechanisms of transport for many physiological fluids, which is achieved by the passage of progressive waves of area contraction and expansion over flexible walls of a tube containing fluid. Various studies on peristaltic transport, experimental as well as theoretical, have been carried out by many researchers to explain peristaltic pumping in physiological systems. The study of couple stress fluid is very useful in understanding various physical problems

because it possesses the mechanism to describe rheological complex fluids such as liquid crystals and human blood. By couple stress fluid, we mean a fluid whose particles sizes are taken into account, a special case of non-Newtonian fluids. Srivastava et.al.¹ peristaltic transport of a physiological fluid: part I flow in non- uniform geometry. Latham² investigated the fluid mechanics of peristaltic pump and science. Mekhemier³ studied non-linear peristaltic transport a porous medium in an inclined planar channel. Srivastava and Srivastava⁴ studied peristaltic transport of a non-newtonian fluid: applications to the vas deferens and small intestine. El-dabe and El-Mohandis⁵ have studied magneto hydrodynamic flow of second order fluid through a porous medium on an inclined porous plane. Rathod and Asha⁶ effects of magnetic field and an endoscope on peristaltic motion. Rathod and Mahadev studied effect of magnetic field on ureteral peristalsis in cylindrical tube.

Rathod and Pallavi⁸ studied the influence of wall properties on MHD peristaltic transport of dusty fluid. Rathod and Pallavi⁹ studied the effect of slip condition and heat transfer on MHD peristaltic transport through a porous medium with complaint wall. Rathod and Mahadev¹⁰ studied slip effects and heat transfer on MHD peristaltic flow of Jeffrey fluid in an inclined channel. Rathod and Laxmi¹¹ investigated effects of heat transfer on the peristaltic MHD flow of a Bingham fluid through a porous medium in an inclined channel. Rathod and Laxmi¹² studied effects of heat transfer on the peristaltic MHD flow of a Bingham fluid through a porous medium in a channel. Jayarami Reddy et.al.¹³

studied peristaltic flow of a Williamson fluid in an inclined planar channel under the effect of a magnetic field. Ramana Kumari and Radhakrishnamacharya¹⁴ studied effect of slip on peristaltic transport in an inclined channel with wall effects. Reddappa *et al.*¹⁵ studied the peristaltic transport of a Jeffrey fluid in an inclined planar channel with variable viscosity under the effect of a magnetic field.

The advantage of the decomposition method is that it can provide analytical approximation to a rather wide class of nonlinear (and stochastic) equations without linearization, perturbation, closure approximations, or discretization methods which can result in massive numerical computation. The usually desired closed-form analytical solutions of a nonlinear problem necessitate making some simplifying and restrictive assumptions in order to make it solvable.

The present research aim is to investigate the interaction of peristalsis for the flow of a couple stress fluid in a two dimensional inclined channel with the effect of magnetic field through a porous medium by Adomian decomposition method. The computational analysis has been carried out for drawing velocity profiles, pressure gradient and frictional force.

FORMULATION OF THE PROBLEM

We consider a peristaltic flow of a Couple stress fluids through two-dimensional channel of width 2a and inclined at an angle α to the horizontal symmetric with respect to its axis. The walls of the channel are assumed to be flexible.

The wall deformation is

$$H(x,t) = a + bCos(\frac{2\pi}{\lambda}(X - ct)) \qquad \dots (1)$$

Where 'b' is the amplitude of the peristaltic wave, 'c' is the wave velocity, ' λ ' is the wave length, t is the time and X is the direction of wave propagation.

The governing equations are

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{2}$$

$$\rho(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}) = -\frac{\partial p}{\partial x} + \mu \nabla^2 u - \eta^* \nabla^4 u - \sigma B_o^2 u - \frac{\mu}{k_1} u + \rho g \sin \alpha \qquad \dots (3)$$

$$\rho(u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}) = -\frac{\partial p}{\partial y} + \mu \nabla^2 v - \eta^* \nabla^4 v - \sigma B_o^2 v - \frac{\mu}{k_1} v - \rho g \cos \alpha \qquad \dots (4)$$

Where,
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

u and v are velocity components, 'p' is the fluid pressure, ' ρ ' is the density of the fluid, ' μ ' is the coefficient of viscosity, ' η^* ' is the coefficient of couple stress, 'g' is the gravity due to acceleration, ' α ' angle of inclination, ' σ ' is electric conductivity, ' k_1 ' is the permeability of the porous medium and ' B_{\circ} ' is applied magnetic field.

Introducing a wave frame (x, y) moving with velocity c away from the fixed frame (X, Y) by the transformation

$$x = X - ct, y = Y, u = U, v = V, p = P(X, t)$$
 ... (5)

We introduce the non-dimensional variables:

$$x^* = \frac{x}{\lambda}, \ y^* = \frac{y}{a}, u^* = \frac{u}{c}, \ v^* = \frac{v}{c\delta}, \ t^* = \frac{tc}{\lambda}, \ p^* = \frac{pa^2}{\mu c\lambda}, G = \frac{\rho g a^2}{\mu c}, M = B_{\circ} \sqrt{\frac{\sigma}{\mu a^2}}, \phi = \frac{b}{a} \qquad \dots (6)$$

Equation of motion and boundary conditions in dimensionless form becomes

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{7}$$

$$\operatorname{Re} \delta(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}) = -\frac{\partial p}{\partial x} + (\delta^2 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}) - \frac{1}{\gamma^2} (\delta^2 \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}) (\delta^2 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2})$$

$$-M^2(u) - K^2(u) + G \sin \alpha \qquad \dots (8)$$

$$\operatorname{Re} \delta^{3}\left(u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y}\right)=-\frac{\partial p}{\partial y}+\delta^{2}\left(\delta^{2}\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)-\frac{1}{\gamma^{2}}\delta^{2}\left(\delta^{2}\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(\delta^{2}\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)$$
$$-\delta^{2}M^{2}(v)-\delta^{2}K^{2}(v)-\rho g\delta\cos\alpha\qquad ...(9)$$

Where, $\gamma^2 = \frac{\eta^*}{\mu a^2}$ couple-stress parameter, $K^2 = \frac{k_1}{a^2}$ porous parameter and

 $M^2 = B_o^2 \frac{\sigma}{\mu a^2}$ Hartmann number.

The dimensionless boundary conditions are:

$$\frac{\partial u}{\partial y} = 0; \quad \frac{\partial^2 u}{\partial y^2} = 0 \qquad at \quad y = 0$$

$$u = -1; \frac{\partial^2 u}{\partial y^2} \quad finite \quad at \quad y = \pm h = 1 + \phi Cos[2\pi x]$$
... (10)

Using long wavelength approximation and neglecting the wave number δ , one can reduce Governing equations:

$$\frac{\partial p}{\partial y} = 0 \tag{11}$$

$$\frac{\partial p}{\partial x} = \frac{\partial^2 u}{\partial y^2} - \frac{1}{\gamma^2} \frac{\partial^4 u}{\partial y^4} - M^2(u) - K^2(u) + G \sin \alpha \qquad \dots (12)$$

Solving the Eq.(12) by using Adomian decomposition method and the boundary conditions (10), we get

$$u = \frac{1}{2432902008176640000} \left(A_{23} \right) + \frac{1}{2432902008176640000} \left(A_{24} \left(\frac{dp}{dx} - G Sin[\alpha] \right) \right) \qquad \dots (13)$$

Where

$$A_{1} = -20274183401472000 - 1013709170073600 y^{2} \gamma^{2} + 1368 (M + K)^{6} y^{14} \gamma^{8} + (M + K)^{8} y^{16} \gamma^{8}$$

$$A_2 = 93024(M + K)^4 y^{12} \gamma^6 ((M + K)^2 - 6\gamma^2) +$$

$$24135932620800 y^4 \gamma^2 ((M+K)^2 - \gamma^2) - 3047466240 y^8 \gamma^4$$

$$A_{3} = ((M+K)^{4} - 3(M+K)^{2} \gamma^{2} + \gamma^{4}) + 335221286400 y^{6} (2(M+K)^{2} \gamma^{4} - \gamma^{6}) - 19535040 y^{10} (3(M+K)^{4} \gamma^{6} - 4(M+K)^{2} \gamma^{8})$$

$$\begin{split} &A_{4} = -20274183401472000 - 1013709170073600h^{2}\ \gamma^{2} + 1368h^{14}\ (M+K)^{6}\ \gamma^{8} + h^{16}\ (M+K)^{8}\ \gamma^{8} + 93024h^{12}\ (M+K)^{4}\ \gamma^{6}\ ((M+K)^{2}-6\gamma^{2}) \\ &A_{5} = 24135932620800h^{4}\ \gamma^{2}\ ((M+K)^{2}-\gamma^{2}) - 3047466240h^{8}\ \gamma^{4}\ ((M+K)^{4}-3(M+K)^{2}\ \gamma^{2} + \gamma^{4}) \\ &A_{5} = 335221286400h^{6}\ (2(M+K)^{2}\ \gamma^{4}-\gamma^{6}) - 19535040h^{10}\ (3(M+K)^{4}\ \gamma^{6} - 4(M+K)^{2}\ \gamma^{8}) \\ &A_{7} = 20922789888000 + 10461394944000\ y^{2}\ \gamma^{2} - 960(M+K)^{6}\ y^{14}\ y^{8} + (M+K)^{8}\ y^{16}\ y^{8} \\ &A_{5} = 43680(M+K)^{4}\ y^{12}\ y^{6}\ ((M+K)^{2}-6\gamma^{2}) + 871782912000\ y^{4}\ y^{2}\ (-(M+K)^{2}+\gamma^{2}) \\ &+518918400y^{8}\ \gamma^{4}\ ((M+K)^{4}-3(M+K)^{2}\ y^{2} + \gamma^{4}) \\ &A_{9} = 29059430400y^{6}\ (2(M+K)^{2}\ y^{4} - \gamma^{6}) + 5765760y^{10}\ (3(M+K)^{4}\ y^{6} - 4(M+K)^{2}\ y^{8}) \\ &A_{10} = 20922789888000 + 10461394944000h^{2}\ y^{2} - 960(M+K)^{6}\ h^{14}\ y^{8} + (M+K)^{8}\ h^{16}\ y^{8} \\ &A_{11} = 43680(M+K)^{4}\ h^{12}\ y^{6}\ ((M+K)^{2} - 6\gamma^{2}) + 871782912000h^{4}\ y^{2}\ (-(M+K)^{2} + \gamma^{2}) \\ &A_{12} = 518918400h^{8}\ y^{4}\ ((M+K)^{4} - 3(M+K)^{2}\ y^{2} + \gamma^{4}) - 29059430400h^{6}\ (2(M+K)^{2}\ y^{4} - \gamma^{6}) \\ &+ 5765760h^{10}\ (3(M+K)^{4}\ y^{5} - 4(M+K)^{2}\ y^{8}) \\ &A_{13} = 101370917007360000 + 3379030566912000h^{2}\ y^{2} - 1520(M+K)^{6}\ h^{14}\ y^{8} + (M+K)^{8}\ h^{16}\ y^{8} \\ &A_{14} = 116280(M+K)^{4}\ h^{12}\ y^{6}\ ((M+K)^{4} - 3(M+K)^{2}\ y^{2}) + 670442572800h^{6}\ (2(M+K)^{2}\ y^{4} - y^{6}) \\ &+ 27907200h^{10}\ (3(M+K)^{4}\ y^{5} - 4(M+K)^{2}\ y^{8}) \\ &A_{16} = -20274183401472000 - 10137091700736000y^{2}\ y^{2} + 1368(M+K)^{6}\ h^{14}\ y^{8} + (M+K)^{8}\ y^{16}\ y^{8} \\ &A_{17} = 93024(M+K)^{4}\ y^{12}\ y^{6}\ ((M+K)^{2} - 6y^{2}) + 24135932620800\ y^{4}\ y^{2}\ ((M+K)^{2} - y^{2}) \\ &A_{18} = 3047466240y^{8}\ y^{4}\ ((M+K)^{4} - 3(M+K)^{2}\ y^{2} + y^{4}) + 335221286400y^{6}\ (2(M+K)^{2}\ y^{8} - y^{8}) \\ &A_{19} = -20274183401472000 - 1013709170073600y^{2}\ y^{2} + 1368(M+K)^{6}\ h^{14}\ y^{8} + (M+K)^{8}\ h^{16}\ y^{8} + (M+K)^{8}\ h^{16}\ y^{8} + (M+K)^{8}$$

$$A_{20} = 93024(M+K)^{4} h^{12} \gamma^{6} ((M+K)^{2} - 6\gamma^{2}) + 24135932620800 h^{4} \gamma^{2} ((M+K)^{2} - \gamma^{2})$$

$$A_{21} = 3047466240 h^{8} \gamma^{4} ((M+K)^{4} - 3(M+K)^{2} \gamma^{2} + \gamma^{4}) + 335221286400 h^{6}$$

$$(2(M+K)^{2} \gamma^{4} - \gamma^{6}) - 19535040 h^{10} (3(M+K)^{4} \gamma^{6} - 4(M+K)^{2} \gamma^{8})$$

$$A_{22} = 101370917007360000 + 3379030566912000 y^{2} \gamma^{2} - 1520(M+K)^{6} y^{14} \gamma^{8}$$

$$+ (M+K)^{8} y^{16} \gamma^{8} - 116280(M+K)^{4} y^{12} \gamma^{6} ((M+K)^{2} - 6\gamma^{2}) + 60339831552000 y^{4} \gamma^{2}$$

$$(-(M+K)^{2} + \gamma^{2}) + 5079110400 y^{8} \gamma^{4} ((M+K)^{4} - 3(M+K)^{2} \gamma^{2} + \gamma^{4}) -$$

$$670442572800 y^{6} (2(M+K)^{2} \gamma^{4} - \gamma^{6}) + 27907200 y^{10} (3(M+K)^{4} \gamma^{6} - 4(M+K)^{2} \gamma^{8})$$

$$A_{23} = \gamma^{2} \left(-\frac{\left(46225138155356392560 \, y^{3} \left(A_{1} + A_{2}A_{3}\right)\right)}{\left(h^{3} \, \gamma^{2} \left(A_{4} + A_{5} + A_{6}\right)\right)} - \frac{\left(48658040163533032560 \left(A_{7} - A_{8} - A_{9}\right)\right)}{\left(\gamma^{2} \left(A_{10} - A_{11} + A_{12}\right)\right)} \right)$$

$$A_{24} = \gamma^{2} \begin{pmatrix} \left(h y^{3} \left(A_{13} - A_{14} + A_{15}\right)\right) \\ \left(A_{16} + A_{17} - A_{18}\right) \\ \hline \left(20274183401472000 \left(A_{19} + A_{20} - A_{21}\right)\right) \\ -y^{4} \left(A_{22}\right) \end{pmatrix}$$

The volumetric flow rate in the wave frame is defined by

$$q = \int_{0}^{h} u dy = \frac{1}{2432902008176640000} \left(B_{25} + B_{26} \left(\frac{dp}{dx} - GSin[\alpha] \right) \right)$$
 ... (14)

Where

$$B_{1} = 355687428096000 - 2964061900800 h^{2} \left(-20 + h^{2} \left(M + K\right)^{2}\right) \gamma^{2}$$

$$B_{2} = 980179200 h^{4} \left(3024 - 144 h^{2} \left(M + K\right)^{2} + h^{4} \left(M + K\right)^{4}\right) \gamma^{4} - 57120 h^{6} \left(-1235520 + 51480 h^{2} \left(M + K\right)^{2} - 468 h^{4} \left(M + K\right)^{4} + h^{6} \left(M + K\right)^{6}\right) \gamma^{6}$$

$$B_{3} = h^{8} \begin{pmatrix} 980179200 - 35642880h^{2} (M+K)^{2} + 342720h^{4} (M+K)^{4} \\ -1088h^{6} (M+K)^{6} + h^{8} (M+K)^{8} \end{pmatrix} \gamma^{8}$$

$$B_4 = 20922789888000 - 871782912000h^2 \left(-12 + h^2 \left(M + K\right)^2\right)\gamma^2 + 518918400h^4 \left(1680 - 112h^2 \left(M + K\right)^2 + h^4 \left(M + K\right)^4\right)\gamma^4$$

$$B_5 = 43680h^6 \left(-665280 + 35640h^2 \left(M + K \right)^2 - 396h^4 \left(M + K \right)^4 + h^6 \left(M + K \right)^6 \right) \gamma^6$$

$$B_6 = h^8 \left(518918400 - 23063040h^2 (M + K)^2 + 262080h^4 (M + K)^4 \right) \gamma^8$$
$$-960h^6 (M + K)^6 + h^8 (M + K)^8$$

$$B_{7} = 101370917007360000 - 60339831552000h^{2} \left(-56 + h^{2} \left(M + K\right)^{2}\right) \gamma^{2}$$

$$+5079110400h^{4} \left(11880 - 264h^{2} \left(M + K\right)^{2} + h^{4} \left(M + K\right)^{4}\right) \gamma^{4}$$

$$B_8 = 116280h^6 \left(-5765760 + 131040h^2 \left(M + K \right)^2 - 720h^4 \left(M + K \right)^4 + h^6 \left(M + K \right)^6 \right) \gamma^6$$

$$B_9 = h^8 \begin{pmatrix} -5079110400 + 111628800h^2 (M+K)^2 - 697680h^4 (M+K)^4 \\ +1520h^6 (M+K)^6 + h^8 (M+K)^8 \end{pmatrix} \gamma^8$$

$$B_{10} = -20274183401472000 + 24135932620800h^{2} \left(-42 + h^{2} \left(M + K \right)^{2} \right) \gamma^{2} - 3047466240h^{4} \left(7920 - 220h^{2} \left(M + K \right)^{2} + h^{4} \left(M + K \right)^{4} \right) \gamma^{4}$$

$$B_{11} = 93024h^{6} \left(-3603600 + 98280h^{2} \left(M + K \right)^{2} - 630h^{4} \left(M + K \right)^{4} + h^{6} \left(M + K \right)^{6} \right) \gamma^{6}$$

$$B_{12} = h^{8} \begin{pmatrix} -3047466240 + 78140160h^{2} (M+K)^{2} - 558144h^{4} (M+K)^{4} \\ +1368h^{6} (M+K)^{6} + h^{8} (M+K)^{8} \end{pmatrix} \gamma^{8}$$

$$B_{13} = -20274183401472000h^5 - 482718652416000h^7\gamma^2 + 6704425728000h^9(M+K)^2\gamma^2 - 6704425728000h^9\gamma^4$$

$$B_{14} = 121898649600h^{11}(M+K)^2 \gamma^4 - 390700800h^{13}(M+K)^4 \gamma^4 - 6094324800h^{11}\gamma^6 + 1172102400h^{13}(M+K)^2 \gamma^6 - 5581440h^{15}(M+K)^4 \gamma^6$$

$$B_{15} = 6840h^{17} (M+K)^6 \gamma^6 - 390700800h^{13} \gamma^8 + 7441920h^{15} (M+K)^2 \gamma^8 -41040h^{17} (M+K)^4 \gamma^8 + 80h^{19} (M+K)^6 \gamma^8 - \frac{1}{21}h^{21} (M+K)^8 \gamma^8$$

$$B_{16} = 101370917007360000 - 60339831552000h^{2} \left(-56 + h^{2} \left(M + K\right)^{2}\right) \gamma^{2} + 5079110400h^{4} \left(11880 - 264h^{2} \left(M + K\right)^{2} + h^{4} \left(M + K\right)^{4}\right) \gamma^{4}$$

$$B_{17} = 116280h^{6} \left(-5765760 + 131040h^{2} \left(M + K \right)^{2} - 720h^{4} \left(M + K \right)^{4} + h^{6} \left(M + K \right)^{6} \right) \gamma^{6}$$

$$B_{18} = h^{8} \left(5079110400 - 111628800h^{2} (M+K)^{2} + 697680h^{4} (M+K)^{4} - 1520h^{6} (M+K)^{6} + h^{8} (M+K)^{8} \right) \gamma^{8}$$

$$B_{19} = -101370917007360000 + 60339831552000h^{2} \left(-56 + h^{2} \left(M + K\right)^{2}\right) \gamma^{2}$$
$$-5079110400h^{4} \left(11880 - 264h^{2} \left(M + K\right)^{2} + h^{4} \left(M + K\right)^{4}\right) \gamma^{4}$$

$$B_{20} = 116280h^{6} \left(-5765760 + 131040h^{2} \left(M + K \right)^{2} - 720h^{4} \left(M + K \right)^{4} + h^{6} \left(M + K \right)^{6} \right) \gamma^{6}$$

$$B_{21} = h^{8} \begin{pmatrix} -5079110400 + 111628800h^{2} (M+K)^{2} - \\ 697680h^{4} (M+K)^{4} + 1520h^{6} (M+K)^{6} + h^{8} (M+K)^{8} \end{pmatrix} \gamma^{8}$$

$$B_{22} = -20274183401472000 + 24135932620800h^{2} \left(-42 + h^{2} \left(M + K\right)^{2}\right) \gamma^{2}$$

$$-3047466240h^{4} \left(7920 - 220h^{2} \left(M + K\right)^{2} + h^{4} \left(M + K\right)^{4}\right) \gamma^{4}$$

$$B_{23} = 93024h^{6} \left(-3603600 + 98280h^{2} \left(M + K \right)^{2} - 630h^{4} \left(M + K \right)^{4} + h^{6} \left(M + K \right)^{6} \right) \gamma^{6}$$

$$B_{24} = h^{8} \begin{pmatrix} -3047466240 + 78140160h^{2} (M+K)^{2} - 558144h^{4} (M+K)^{4} \\ +1368h^{6} (M+K)^{6} + h^{8} (M+K)^{8} \end{pmatrix} \gamma^{8}$$

$$B_{25} = 648h \left(-\frac{\left(4184557977600020\left(B_1 + B_2 + B_3\right)\right)}{\left(B_4 - B_5 + B_6\right) + \frac{\left(3379030566912017\left(B_7 - B_8 - B_9\right)\right)}{\left(B_{10} + B_{11} + B_{12}\right)} \right)$$

$$B_{26} = \gamma^{2} \left(B_{13} + B_{14} + B_{15} + \frac{\begin{pmatrix} h^{5} (B_{16} - B_{17} + B_{18}) \\ (B_{19} + B_{20} + B_{21}) \end{pmatrix}}{405483668029440000 \begin{pmatrix} B_{22} + B_{23} \\ + B_{24} \end{pmatrix}} \right)$$

The expression for pressure gradient from Eq.(14) is given by

$$\frac{dp}{dx} = \frac{q2432902008176640000 - B_{25}}{B_{26}} + GSin[\alpha] \qquad \dots (15)$$

The instantaneous flux Q(x, t) in the laboratory frame is

$$Q(x,t) = \int_{0}^{h} (u+1)dy = q+h \qquad ... (16)$$

The average flux over one period of peristaltic wane is $\overline{\mathcal{Q}}$

$$\overline{Q} = \frac{1}{T} \int_{0}^{T} Q dt = q + 1 \qquad \dots (17)$$

The pressure rise (drop) over one cycle of the wave can be obtained as

$$\Delta P = \int_{0}^{1} \left(\frac{dp}{dx}\right) dx \tag{18}$$

The dimensionless frictional force F at the wall across one wavelength is given by

$$F = \int_{0}^{1} h(-\frac{dp}{dx})dx \tag{19}$$

RESULTS AND DISCUSSIONS

In this section we have presented the graphical results of the solutions axial velocity u, pressure rise ΔP , friction force F for the different values of couple stress (γ), magnetic field (M), angle of inclination (α), gravitational parameter (G), porous parameter (K). The axial velocity is shown in **Figs.** (1 to 5).

The Variation of u with, we find that u depreciates with increase in (**Fig. 1**). The Variation of u with magnetic field M shows that for u decreases with increasing in M (**Fig. 2**). The Variation of u with angle of inclination shows that for u increases with increasing in (**Fig 3**). The Variation of u with gravitational parameter G shows that for u increases with increasing in G (**Fig 4**). The Variation of u with porous parameter K shows that for u decreases with increasing in K (**Fig 5**).

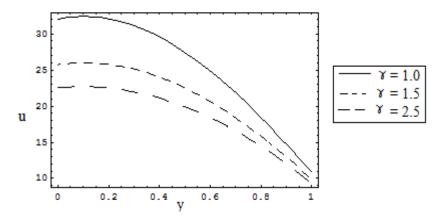


Fig. 1: Effect of γ on u, when $\phi = 0.2, x = 0.1, p = -25$, G = 6, M = 1, $K = 5 & \alpha = \pi/4$.

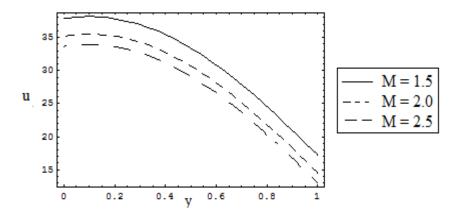


Fig. 2: Effect of **M** on u, when $\gamma = 1, \phi = 0.2, x = 0.1, p = -25$, G=4, $\alpha = \pi/4$, K=1.

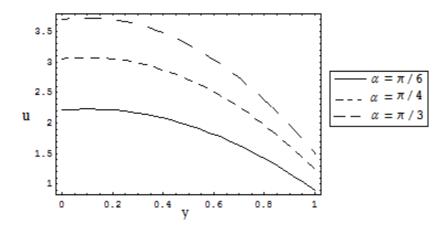


Fig. 3: Effect of α on u, when $\gamma = 3, \phi = 0.2, x = 0.1, p = -.25, M = 5, K = 5 & G = 6$

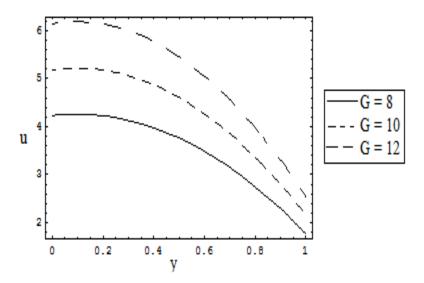


Fig. 4: Effect of G on u, when $\gamma = 1, \phi = .2, x = 0.1, p = -.25$, M = 1, K = 1 & $\alpha = \pi/4$.

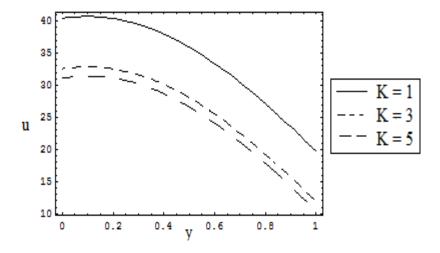


Fig. 5: Effect of K on u, when $\gamma = 1, \phi = .2, x = 0.1, p = -.25$, M = 1, G=4 & $\alpha = \pi/4$.

The variation of pressure rise is shown in **Figs** (6 to 10) for different values of, M, G, K. We find that increases with increasing in (Fig.6). The Variation of with M shows that for increases with increasing in M (Fig 7).

The Variation of with angle of inclination shows that for increases with increasing in (**Fig 8**). The Variation of with gravitational parameter G shows that for increases with increasing in G (**Fig 9**). The Variation of with porous parameter K shows that for increases with increase in K (**Fig 10**).

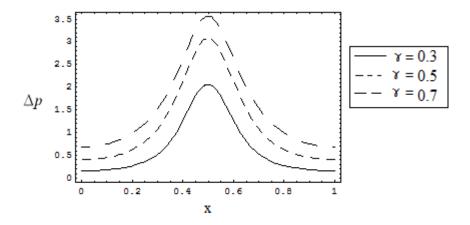


Fig. 6: Effect of γ on Δp , when $\phi = 0.6$, G = 4, $\alpha = \pi/4$, Q = 0, K = 1 & M = 1.

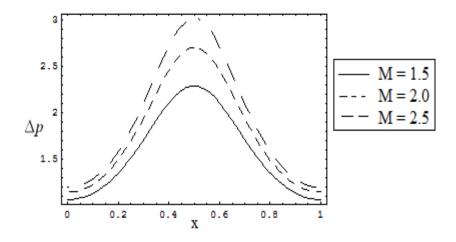


Fig. 7: Effect of **M** on Δp , when $\gamma = .7, \phi = 0.2, G = 2, \alpha = \pi/4, K = 1 & Q = 0.$

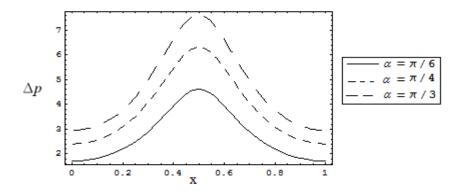


Fig. 8: Effect of α on Δp , when $\gamma = 1.5, \phi = 0.6, M = 1, Q=0, G=20, K=1.$

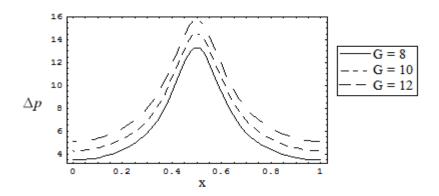


Fig. 9: Effect of G on Δp , when $\gamma = 1.5$, $\phi = 0.6$, M = 10, Q = 0, K = 1 & $\alpha = \pi/4$.

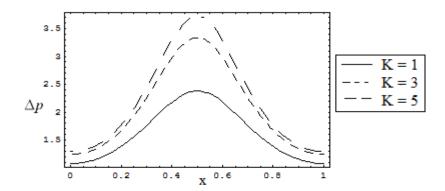


Fig. 10: Effect of K on Δp , when $\gamma = 1.5$, $\phi = 0.6$, M = 10, $Q = 0 & \alpha = \pi/4$

The variation of friction force F is shown in **Figs.** (11 to 15) for a different values of γ , M, α , G, K. Here, it is observed that the effect of all the parameters on friction force are opposite behavior as to the effects on pressure with time average mean flow rate is observed.

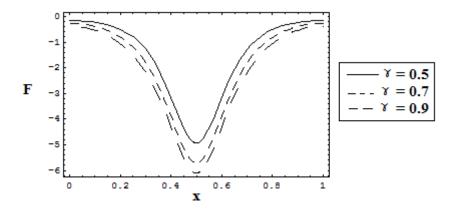


Fig. 11: Effect of γ on F, when $G = 4, \phi = 0.6, \alpha = \pi/4, Q = 0, K=1 & M = 1.$

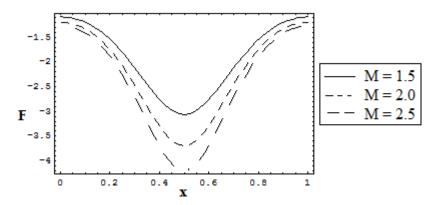


Fig. 12: Effect of **M** on F, when $\gamma = 1, \phi = 0.2, \alpha = \pi/4, Q = 0, K=1 & G = 2.$

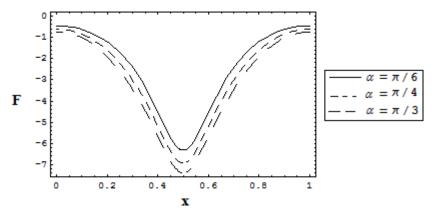


Fig. 13: Effect of α on F, when $\gamma = 1, \phi = 0.6, G = 6, Q = 0, K = 1 & M = 1.$

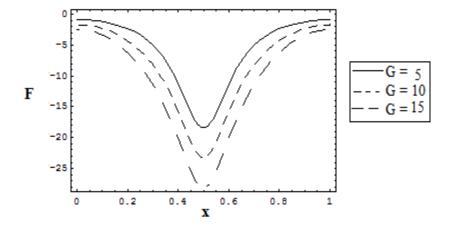


Fig. 14: Effect of G on F, when $\gamma = 1.5$, $\phi = .6$, $\alpha = \pi/4$, Q = 0, K = 1 & M = 10.

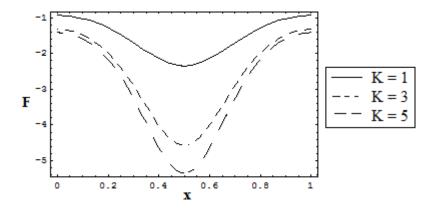


Fig. 15: Effect of K on F, when $\gamma = 1.5$, $\phi = .6$, $\alpha = \pi/4$, Q=0, G=2 & M=10.

CONCLUSION

In this paper we presented a theoretical approach to study the peristaltic flow of a couple stress fluid in an inclined channel with the effect of a magnetic field through a Porous Medium by Adomian decomposition method. The governing Equations of motion are solved analytically. Furthermore, the effect of various values of parameters on Velocity, Pressure rise and Friction force have been computed numerically and explained graphically.

We conclude the following observations:

- 1. The velocity u increases with increasing in gravitational parameter G, angle of inclination α , but, decreases with increasing in couple stress parameter γ porous parameter K & magnetic field M.
- 2. The pressure ΔP increases with increasing in gravitational parameter G, angle of inclination α , couple stress parameter γ , porous parameter K & magnetic field M. The friction force F decreases with increasing in gravitational parameter G, angle of inclination α , couple stress parameter γ , porous parameter K & magnetic field M.

REFERENCES

- 1. L.M. Srivastava, V.P. Srivastava, and S.K. Sinha, Biorheol. 1983, 20, 428.
- 2. T.W. Latham, M.Sc. Thesis, MIT, Cambridge MA 1966.
- 3. Kh. S. Mekhemier, J. Porous . Media, 2003, 5, 189.
- 4. L. M. Srivastava and V. P. Srivastava, *Annals of Biomedical Engineering*, 1985, **13**, 137.
- 5. El-dabe, N.T. and El-Mohandis, S. The Arabian J. for Sci. and Eng, 1995, 20, 571.
- 6. V.P. Rathod and S.K. Asha, *Journal of Applied Mathematics*, 2011, **2**, 102.
- 7. V.P. Rathod and Mahadev, *Ultra Scientist of Physical Sciences*, 2011, 23, 135.

8. V.P. Rathod and Pallavi Kulkarni, *Advances in Applied Science Research*, 2011, **2**, 265.

- 9. V.P. Rathod and Pallavi Kulkarni, Int. J. Applied Mathematical Sciences, 2011, 5, 47.
- 10. V.P. Rathod and Mahadev, J. Chemical, Biological & Physical Sci. 2012, 2, 1987.
- 11. V.P. Rathod and Laxmi Devindrappa, *Mathematical sciences international research journal*, 2014, 3.
- 12. V.P. Rathod and Laxmi Devindrappa, *International Journal of Biomathematics*, 2014, **7**, 1450060.
- 13. B. Jayarami Reddy, M. V. Subba Reddy, C. Nadhamuni Reddy and P. Yogeswar Reddy, *Advances in Applied Science Research*, 2012, **3**, 452.
- 14. A.V. Ramana Kumari and G. Radhakrishnamacharya, *Int. J. of Appl. Math and Mech*, 2011, **7**, 1.
- 15. B. Reddappa, M. V. Subba Reddy and S. R Amakrishana Prasad, *International Journal of Mathematical Archive*, 2011, **2**, 2285.
- 16. V. P. Rathod and S. K. Asha, International journal of mathematical modeling, simulation and application, 2009, **2**, 414.
- 17. V. P. Rathod and S. K. Asha, *Ultra Science*, 2009, **21**, 83.
- 18. V. P. Rathod and S. K. Asha, Advance in applied science research, 2012, 2, 102.
- 19. V. P. Rathod and S. K. Asha, *International Journal of Mathematical Archive*, 2012, **3**, 1.
- 20. V. P. Rathod and S. K. Asha, International Journal of Computer and Organizations Trends, 2013, 3, 109.
- 21. V. P. Rathod and S. K. Asha, *Journal of Chemical, Biology and Physical Science*, 2014, **4**, 468.
- 22. V.P. Rathod and M.M. Channakote, *International Journal of Mathematical Archive*. 2011, **2**, 1.
- 23. V.P. Rathod and M.M. Channakote, *International journal of Mathematical Modeling, Simulation and Application*. 2012, **5**, 11.
- 24. V.P. Rathod and M.M. Channakote, *Advances in Applied Science Research*, 2011, **2**, 134.
- 25. V.P. Rathod and M.M. Channakote, Thermal science, 2014, 18, 1109.
- 26. V.P.Rathod and Pallavi Kulkarni, *International Journal of Mathematical Archive*, 2011, **2**, 1.
- 27. V. P. Rathod and N. G. Sridhar, Peristaltic transport of couple stress fluid in uniform and non-uniform annulus through porous medium, International Journal of Mathematical Archive, 3 (2012) 1561-1574.
- 28. V. P. Rathod, N. G. Sridhar and M. Mahadev, *Advances in Applied Science Research*, 2012, **3**, 2326.
- 29. V. P. Rathod and N. G. Sridhar, *Journal of Chemical, Biological and Physical Sciences*, 2015, **5**, 1760.
- 30. V. P. Rathod and Laxmi Devindrappa, *International journal of mathematical archive*, 2013, **4**, 133.

31. V. P. Rathod and Laxmi Devindrappa, *Journal of chemical, biological and physical sciences*, 2014, **4**, 1452.

- 32. V. P. Rathod and Laxmi Devindrappa, *Mathematical sciences international research journal*, 2014, **3**.
- 33. V. P. Rathod, Anita Tuljappa and Laxmi B, *International journal of mathematical archive*, 2015, **6**, 133.
- 34. V. P. Rathod and Anita Tuljappa, *International journal of mathematical archive*, 2015, **6**, 29.

* Corresponding Author: Dr. V. P. Rathod

Department of studies and Research in Mathematics, Gulbarga University, Gulbarga-585106, Karnataka, India