Journal of Chemical, Biological and Physical Sciences

An International Peer Review E-3 Journal of Sciences

Available online at www.jcbsc.org
Section C: Physical Sciences

Power Function of CST Procedure Based on two PTS in Four-Stage Unbalanced Nested Designs

Anita Mehta
Department of Mathematics \& Statistics, Mohanlal Sukhadia University, Udaipur, India.

Received: 01 March 2016; Revised: 31 March 2016; Accepted: 27 April 2016

Abstract

In this paper we have been derived the expression for power and size of the CST procedure for four-stage partially balanced nested designs. Further, we have derived the formulae for power and size of the CST procedure for balance at third-stage as well as at fourth-stage within $\mathrm{i}^{\text {th }}$ first-stage. The power of CST procedure denoted by $P_{T}(\theta)$ can be obtained by adding different power components $\mathrm{P}_{11}, \mathrm{P}_{12}, \mathrm{P}_{13}$ and P_{14}. i.e. $\quad P_{T}(\theta)=P_{11}+P_{12}+P_{13}+P_{14}$. Where $\mathrm{P}_{11}, \mathrm{P}_{12}, \mathrm{P}_{13}$ and P_{14} be the probabilities of events $\mathrm{E}_{11}, \mathrm{E}_{12}, \mathrm{E}_{13}$ and E_{14} respectively.

Keywords:Power function: size, CST procedure, PTS, partially balanced nested designs.

INTRODUCTION

Size and power of test procedure incorporating preliminary tests of significance (PTS) have studied by Paull ${ }^{1}$, Bozivichet al ${ }^{2}$, Srivastava and Bozivich ${ }^{3}$, Singh and Saxsena ${ }^{4}$ and Rao and Saxena ${ }^{5}$. Mead et al ${ }^{6}$ studied empirically the size and power of the sometimes pooled test proposed by Bozivichet al ${ }^{2}$. Brar^{7} has studied theoretically the power function of conditionally specified test procedures, mean values and mean square error of the variance estimate for three-stage unbalanced nested designs. Test of significance is determined by specification of the population from which experimental data are sampled.

When the interaction effect term is doubtful we may test the hypothesis that the interaction effect is zero before we analyze the data. When hypothesis is accepted the effect term is eliminated from the model, such specification is termed as conditional specification and the objective test used in resolving the uncertainty of the parent model is known as preliminary test of significance (PTS). The procedure of testing a main hypothesis involving preliminary test is called conditionally specified test (CST) procedure. We consider the linear model for four-stage unbalanced design as
$\mathrm{Y}_{\mathrm{ijkl}}=\mu+\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{ij}}+\mathrm{c}_{\mathrm{ijk}}+\mathrm{e}_{\mathrm{ijkl}}$

All terms in right hand side of the model except μ are assumed to be independent and normally distributed random variables with zero means and variances $\sigma_{a}^{2}, \sigma_{b}^{2}, \sigma_{c}^{2}$ and σ_{e}^{2} respectively.

Where $Q_{1}=\left[I-\sum_{i}^{a} \sum_{j}^{b_{i}} \sum_{k}^{c_{i j}} \frac{J_{n_{i j k}}}{n_{i j k}}\right], Q_{2}=\left[\sum_{i}^{a} \sum_{j}^{b_{i}} \sum_{k}^{c_{i j}} \frac{J_{n_{i j k}}}{n_{i j k}}-\sum_{i}^{a} \sum_{j}^{b_{i}} \frac{J_{n_{i j}}}{n_{i j}}\right], Q_{3}=\left[\sum_{i}^{a} \sum_{j}^{b_{i}} \frac{J_{n_{i j 0}}}{n_{i j 0}}-\sum_{i}^{a} \frac{J_{n_{i}}}{n_{i}}\right]$
$\mathrm{Q}_{4}=\left[\sum_{\mathrm{i}}^{\mathrm{a}} \frac{\mathrm{J}_{\mathrm{n}_{\mathrm{i}}}}{\mathrm{n}_{\mathrm{i}}}-\frac{\mathrm{J}_{\mathrm{n}}}{\mathrm{n}}\right]$,
$\tau_{0}=\frac{\left(N-k_{6}\right)}{(c-b)}, \tau_{1}=\frac{\left(k_{6}-k_{5}\right)}{(b-a)}, \tau_{2}=\frac{\left(\mathbf{N}-\mathrm{k}_{4}\right)}{(\mathrm{b}-\mathrm{a})}$,
$\tau_{3}=\frac{\left(\mathrm{k}_{5}-\mathrm{k}_{3}\right)}{(\mathrm{a}-1)}, \tau_{4}=\frac{\left(\mathrm{k}_{4}-\mathrm{k}_{2}\right)}{(\mathrm{a}-1)}, \tau_{5}=\frac{\left(\mathrm{N}-\mathrm{k}_{1}\right)}{(\mathrm{a}-1)}$.
Where J_{n} denote an ($n \times n$) matrix of unit elements and $\sum_{i}^{k} A_{i}$, the direct sum of matrices $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots . ., \mathrm{A}_{\mathrm{k}}$ as in Searle ${ }^{8}$ and

$$
\mathrm{b}=\sum_{\mathrm{i}}^{\mathrm{a}} \mathrm{~b}_{\mathrm{i}}, \mathrm{c}=\sum_{\mathrm{i}}^{\mathrm{a}} \sum_{\mathrm{j}}^{\mathrm{b}_{\mathrm{i}}} \mathrm{c}_{\mathrm{ij}}, \mathrm{~N}=\sum_{\mathrm{i}}^{\mathrm{a}} \sum_{\mathrm{j}}^{\mathrm{b}_{\mathrm{i}}} \sum_{\mathrm{ij}}^{\mathrm{c}_{\mathrm{ij}}} \mathrm{n}_{\mathrm{ijk}}, \mathrm{n}_{\mathrm{i} 00}=\sum_{\mathrm{j}} \sum_{\mathrm{k}} \mathrm{n}_{\mathrm{ijk}}, \mathrm{n}_{\mathrm{ij} 0}=\sum_{\mathrm{k}} \mathrm{n}_{\mathrm{ijk}} .
$$

The k's that define in the above relations are functions of $\mathrm{n}_{\mathrm{ijk}}$'s namely,
$k_{1}=\frac{\sum_{i}^{a} n_{i 00}^{2}}{N}, k_{2}=\frac{\sum_{i}^{a} \sum_{j}^{b_{i}} n_{i j 0}^{2}}{N}, k_{3}=\frac{\sum_{i}^{a} \sum_{j}^{b_{i}} \sum_{k}^{c_{i j}} n_{i j k}^{2}}{N}$,
$k_{4}=\sum_{i}^{a}\left[\sum_{j}^{b_{i}} \frac{n_{i j 0}^{2}}{n_{i 00}}\right], k_{5}=\sum_{i}^{a}\left[\sum_{j}^{b_{i}} \sum_{k}^{c_{i j}} \frac{n_{i j k}^{2}}{n_{i 00}}\right], k_{6}=\sum_{i}^{a} \sum_{j}^{b_{i}}\left[\sum_{k}^{c_{i j}} \frac{n_{i j k}^{2}}{n_{i j 0}}\right]$.

Where $\mathrm{Y}_{\mathrm{ijkl}}$ is equal to the sum of general mean μ and independent normal variables $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{ij}}, \mathrm{c}_{\mathrm{ijk}}$ and $e_{i j k l}$, the vector $\underline{\mathrm{Y}}$ is distributed as $N(\mu, \underline{J}, M)$, where $\underline{\mathrm{J}}$ denotes an all in one column vector. The variance-covariance matrix M can be expressed as
$M=\sigma_{e}^{2} I+\sigma_{c}^{2} \sum \sum \sum J_{n_{j k}}+\sigma_{b}^{2} \sum \sum J_{n_{i j}}+\sigma_{a}^{2} \sum J_{n_{i}}$
For testing the hypothesis $\mathrm{H}_{0}: \sigma_{a}^{2}=0$ against the alternative hypothesis $\mathrm{H}_{1}: \sigma_{\mathrm{a}}^{2}>0$, an exact test of the hypothesis $\mathrm{H}_{0}: \sigma_{\mathrm{a}}^{2}=0$ is not possible in general because $\tau_{1} \neq \tau_{3}$ and $\tau_{4} \neq \tau_{2}$. When $\mathrm{n}_{\mathrm{ijk}}=\mathrm{n}$ and $\mathrm{c}_{\mathrm{ij}}=\mathrm{k}$ for all i, j and k , an exact test is available because under this condition $\tau_{1}=\tau_{3}$. Also from ANOVA Table- $\mathbf{1}$ an exact test for testing H_{0} exists if $\sigma_{\mathrm{b}}^{2}=0$ and $\sigma_{\mathrm{c}}^{2}=0$. But we do not know whether σ_{b}^{2} and σ_{c}^{2} are zero or not.

Table-1: Analysis of variance table for four-stage unbalanced nested designs.

Sources of variation	Degrees of freedom	Mean squares	E(MSS)
Between A classes	$\eta_{4}=\mathrm{a}-1$	$\mathrm{Y}^{\prime} \mathrm{Q}_{4} \mathrm{Y}=\mathrm{M}_{4}$	$\sigma_{e}^{2}+\tau_{3} \sigma_{c}^{2}+\tau_{4} \sigma_{b}^{2}+\tau_{5} \sigma_{a}^{2}$
Between B classes within A classes	$\eta_{3}=\sum_{i}^{a} b_{i}-\mathrm{a}$	$\mathrm{Y}^{\prime} \mathrm{Q}_{3} \mathrm{Y}=\mathrm{M}_{3}$	$\sigma_{e}^{2}+\tau_{1} \sigma_{c}^{2}+\tau_{2} \sigma_{b}^{2}$
Between C classes within B classes	$\eta_{2}=\sum_{i}^{a} \sum_{j}^{b_{i}} c_{i j}-\sum_{i}^{a} b_{i}$	$\mathrm{Y}^{\prime} \mathrm{Q}_{2} \mathrm{Y}=\mathrm{M}_{2}$	$\sigma_{e}^{2}+\tau_{0} \sigma_{c}^{2}$
Within C classes	$\eta_{1}=N-\sum_{i}^{a} \sum_{j}^{b_{i}} c_{i j}$	$\mathrm{Y}^{\prime} \mathrm{Q}_{1} \mathrm{Y}=\mathrm{M}_{1}$	σ_{e}^{2}

Under such condition, model (1) assumes the following forms:

$$
Y_{i j k l}=\left[\begin{array}{ll}
\mu+a_{i}+b_{i j}+c_{i j k}+e_{i j k l} & \text { for } \sigma_{b}^{2}>0, \sigma_{c}^{2}>0 \\
\mu+a_{i}+b_{i j}+e_{i j k l} & \text { for } \sigma_{b}^{2}>0, \sigma_{c}^{2}=0 \tag{4}\\
\mu+a_{i}+c_{i j k}+e_{i j k l} & \text { for } \sigma_{b}^{2}=0, \sigma_{c}^{2}>0 \\
\mu+a_{i}+e_{i j k l} & \text { for } \sigma_{b}^{2}=0, \sigma_{c}^{2}=0
\end{array}\right.
$$

If $\sigma_{b}^{2} \geq 0, \sigma_{c}^{2} \geq 0$, the model (1) is known as conditionally specified model, however, if it is known with certainty that $\sigma_{b}^{2}>0, \sigma_{c}^{2}>0$ then appropriate model is (3) and which is known as unconditionally specified full model and if $\sigma_{b}^{2}>0, \sigma_{\mathrm{c}}^{2}=0$ or $\sigma_{\mathrm{b}}^{2}=0, \sigma_{\mathrm{c}}^{2}>0$ or $\sigma_{\mathrm{b}}^{2}=0, \sigma_{\mathrm{c}}^{2}=0$, then
the appropriate model are (4), (5) and (6) respectively which are also known as unconditionally specified model. If we assume the unconditionally specified full model given in (3) then $\sigma_{b}^{2}>0$ and $\sigma_{c}^{2}>0$ and we obtain ANOVA Table-1.

Then for testing H_{0}, the test statistic is $\mathrm{F}_{1}=\frac{M_{4}}{M^{\prime}}$ where mean square $\mathrm{M}_{4}=\sigma_{\mathrm{e}}^{2}+\tau_{3} \sigma_{\mathrm{c}}^{2}+\tau_{4} \sigma_{\mathrm{b}}^{2}$ under $\mathrm{H}_{0}: \sigma_{\mathrm{a}}^{2}=0$ and $\mathrm{M}^{\prime}=\hat{\sigma_{e}^{2}}+\tau_{3} \hat{\sigma_{c}^{2}}+\tau_{4} \hat{\sigma_{b}^{2}}$

To obtain estimates of the variance components is accomplished by equating expected and observed mean squares in the ANOVA Table- $\mathbf{1}$ as follows:

$$
\hat{\sigma_{e}^{2}}=\mathrm{M}_{1} \hat{\sigma_{\mathrm{c}}^{2}}=\frac{\left(\mathrm{M}_{2}-\mathrm{M}_{1}\right)}{\tau_{0}} \text { and } \sigma_{\mathrm{b}}^{2}=\frac{\left[\mathrm{M}_{3}-\mathrm{M}_{1}-\frac{\tau_{1}}{\tau_{0}}\left(\mathrm{M}_{2}-\mathrm{M}_{1}\right)\right]}{\tau_{2}}
$$

Putting this value in M^{\prime} we get
$\mathrm{M}^{\prime}=\left[\mathrm{M}_{1}\left(1-\frac{\tau_{3}}{\tau_{0}}-\frac{\tau_{4}}{\tau_{2}}+\frac{\tau_{1} \tau_{4}}{\tau_{0} \tau_{2}}\right)+\mathrm{M}_{2}\left(\frac{\tau_{3}}{\tau_{0}}-\frac{\tau_{1}}{\tau_{0}} \frac{\tau_{4}}{\tau_{2}}\right)+\mathrm{M}_{3}\left(\frac{\tau_{4}}{\tau_{2}}\right)\right]$
Now, taking $\quad \frac{\tau_{1}}{\tau_{0}}=\mathrm{C}_{1}, \quad \frac{\tau_{3}}{\tau_{0}}=\mathrm{C}_{2}, \quad \frac{\tau_{4}}{\tau_{2}}=\mathrm{C}_{3}$
For testing the null hypothesis $\mathrm{H}_{0}: \sigma_{a}^{2}=0$ against $\mathrm{H}_{1}: \sigma_{\mathrm{a}}^{2}>0$, we have derived following CST procedure.

Reject H_{0}, if any of the four mutually exclusive events occurs in each of the following CST procedures:
CST Procedure
When $\mathrm{C}_{1}<1, \mathrm{C}_{2}<1, \mathrm{C}_{3}>1,\left(1-\mathrm{C}_{2}-\mathrm{C}_{3}+\mathrm{C}_{1} \mathrm{C}_{3}\right)<0,\left(\mathrm{C}_{2}-\mathrm{C}_{1} \mathrm{C}_{3}\right)<0$
$p_{11}:\left\{\frac{M_{2}}{M_{1}}<\beta_{1}, \frac{M_{3}}{M_{12}}<\beta_{2}, \frac{M_{4}}{M_{123}} \geq \beta_{3}\right\}$
$p_{12}:\left\{\begin{array}{l}\frac{M_{2}}{M_{1}} \geq \beta_{1}, \frac{M_{3}}{\left[C_{1} M_{2}+\left(1-C_{1}\right) M_{1}\right]} \geq \beta_{4}, \\ \frac{M_{4}}{\left[C_{3} M_{3}-\left(C_{1} C_{3}-C_{2}\right) M_{2}-\left(C_{2}+C_{3}-1-C_{1} C_{3}\right) M_{1}\right]} \geq \beta_{5}\end{array}\right\}$

$$
\begin{align*}
& p_{13}:\left\{\frac{M_{2}}{M_{1}}<\beta_{1}, \frac{M_{3}}{M_{12}} \geq \beta_{2}, \frac{M_{4}}{\left[C_{3} M_{3}-\left(C_{3}-1\right) M_{2}\right]} \geq \beta_{6}\right\} \\
& p_{14}:\left\{\frac{M_{2}}{M_{1}} \geq \beta_{1}, \frac{M_{3}}{\left[C_{1} M_{2}+\left(1-C_{1}\right) M_{1}\right]}<\beta_{4}, \frac{M_{4}}{\left[C_{2} M_{2}+\left(1-C_{2}\right) M_{1}\right]} \geq \beta_{7}\right\} \tag{7}
\end{align*}
$$

If α and β are the probabilities of type I and type II errors respectively, the quantity ($1-\beta$) called the power of the test and α the size of the test. The power of the test depends upon the difference between the parameter value specified by H_{0} and actual value of the parameter. Power function ($1-\beta$) can be expressed as a function of true parameter say θ.

If T is a test of H_{0} the power function of T is defined as the probability of rejection of H_{0}, when the distribution from which the sample is drawn is parameterized by θ and denoted by $P_{T}(\theta)$. Let $\mathrm{P}_{11}, \mathrm{P}_{12}$, P_{13} and P_{14} be the probabilities of events E_{11}, E_{12}, E_{13} and E_{14} respectively. Since E_{11}, E_{12}, E_{13} and E_{14} are mutually exclusive, the power function of the CST procedure is the probability $P_{T}(\theta)$ which is given by
$P_{T}(\theta)=\sum_{i=1}^{4} \operatorname{Pr}\left(E_{1 i} \mid \mathrm{H}_{1}\right)=\sum_{i=1}^{4} P_{1 i}$
Where $\mathrm{P}_{1 \mathrm{i}}=\operatorname{Pr}\left(\mathrm{E}_{1 \mathrm{i}} \mid \mathrm{H}_{1}\right)$ and $\mathrm{H}_{1}: \sigma_{\mathrm{a}}^{2}>0$. Thus, the size of the CST procedure will be $\sum_{\mathrm{i}=1}^{4} \operatorname{Pr}\left(\mathrm{E}_{1 \mathrm{i}} \mid \mathrm{H}_{0}\right)$, where $\mathrm{H}_{0}: \sigma_{\mathrm{a}}^{2}=0$.

Integral expressions for power components P_{11}, P_{12}, P_{13} and P_{14} when η_{1}, v_{2}, v_{3} and v_{4} are Even Numbers: We know that $\eta_{1} M_{1}$ is distributed as $\sigma_{1}^{2} \chi_{\eta_{1}}^{2}$ where $\chi_{\eta_{1}}^{2}$ is the central chi-square statistic based on η_{1} degrees of freedom. According to Box loc. cit., the sum of squares $\eta_{2} M_{2}$, $\eta_{3} M_{3}$ and $\eta_{4} M_{4}$ are approximately distributed as $d_{2} \chi_{v_{2}}^{2}, d_{3} \chi_{v_{3}}^{2}$ and $d_{4} \chi_{v_{4}}^{2}$, where $\chi_{v_{2}}^{2}, \chi_{v_{3}}^{2}$ and $\chi_{v_{4}}^{2}$ are the central chi-square statistics based on v_{2}, v_{3}, and v_{4} degrees of freedom respectively and
$d_{2}, d_{3}, d_{4}, v_{2}, v_{3}$ and v_{4} the sum of squares $\eta_{i} M_{i}(i=1,2,3,4)$ are distributed independently, the joint p.d.f. of $\mathrm{M}_{\mathrm{i}}(\mathrm{i}=1,2,3,4)$ can be written as

$$
\begin{align*}
& g\left(M_{1}, M_{2}, M_{3}, M_{4}\right)=C^{*} M_{1}^{\frac{\eta_{1}}{2}-1} \cdot M_{2}^{\frac{v_{2}}{2}-1} \cdot M_{3}^{\frac{v_{3}}{2}-1} \cdot M_{4}^{\frac{v_{4}}{2}-1} \\
& \exp \left\{-\frac{1}{2}\left(\frac{\eta_{1} M_{1}}{\sigma_{1}^{2}}+\frac{\eta_{2} M_{2}}{d_{2}}+\frac{\eta_{3} M_{3}}{d_{3}}+\frac{\eta_{4} M_{4}}{d_{4}}\right)\right\} \tag{9}
\end{align*}
$$

Where C^{*} is the constant and is independent of M_{i} 's. Applying the transformations

$$
\begin{equation*}
u=\frac{\eta_{2} M_{2}}{\eta_{1} M_{1} \theta_{21}}, \quad v=\frac{\eta_{3} M_{3}}{\eta_{2} M_{2} \theta_{32}}, w=\frac{\eta_{4} M_{4}}{\eta_{3} M_{3} \theta_{43}}, \quad x=\frac{\eta_{1} M_{1}}{\eta_{4}} \tag{10}
\end{equation*}
$$

Where $\theta_{21}=\frac{d_{2}}{\sigma_{1}^{2}}, \quad \theta_{32}=\frac{d_{3}}{d_{2}}, \quad \theta_{43}=\frac{d_{4}}{d_{3}}$ Then, the joint p.d.f. of $\mathrm{u}, \mathrm{v}, \mathrm{w}$ and x is given by $\mathrm{h}(\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x})=\mathrm{C}_{1}^{*} \mathrm{x}^{\frac{\eta_{1234}}{2}-1} \mathrm{u}^{\frac{\eta_{234}}{2}-1} \mathrm{v}^{\frac{\eta_{34}}{2}-1} \mathrm{w}^{\frac{\mathrm{v}_{4}}{2}-1} \exp \left\{-\left(\frac{\eta_{4} \mathrm{x}}{2 \sigma_{1}^{2}}\right)(1+\mathrm{u}+\mathrm{uv}+\mathrm{uvw})\right\}$

Where $\eta_{1234}=\eta_{1}+v_{2}+v_{3}+v_{4}, \eta_{234}=v_{2}+v_{3}+v_{4}, \eta_{34}=v_{3}+v_{4}$ and

$$
\begin{equation*}
\mathrm{C}_{1}^{*}=\frac{\left(\frac{\eta_{4}}{2 \sigma_{1}^{2}}\right)^{\frac{\eta_{1234}}{2}}}{\Gamma\left(\frac{\eta_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right) \Gamma\left(\frac{v_{3}}{2}\right) \Gamma\left(\frac{v_{4}}{2}\right)} \tag{12}
\end{equation*}
$$

Integrating out x over the range 0 to ∞, we get the joint p.d.f. of u, v and w as
$f(u, v, w)=\frac{C_{2}^{*} u^{\frac{\eta_{234}}{2}-1} v^{\frac{\eta_{34}}{2}-1} w^{\frac{v_{4}}{2}-1}}{(1+u+u v+u v w)^{\frac{\eta_{1234}}{2}}}$
Where $_{2}^{*}=\frac{\Gamma\left(\frac{\eta_{1234}}{2}\right)}{\Gamma\left(\frac{\eta_{1}}{2}\right) \Gamma\left(\frac{\eta_{2}}{2}\right) \Gamma\left(\frac{\eta_{3}}{2}\right) \Gamma\left(\frac{\eta_{4}}{2}\right)}$.

The limits of integration of the new variables u, v and w corresponding to different components are as follows:

For $\quad P_{11}: 0 \leq \mathrm{u} \leq \mathrm{a}_{1}, \quad 0 \leq \mathrm{v} \leq \frac{\mathrm{b}_{1}\left(1+\mathrm{u} \theta_{21}\right)}{\mathrm{u}}, \quad \frac{\mathrm{e}\left(1+\mathrm{u} \theta_{21}+\mathrm{uv} \theta_{21} \theta_{32}\right)}{\mathrm{uv}} \leq \mathrm{w}<\infty$,
For $\quad \mathrm{P}_{12}: \quad \mathrm{a}_{1} \leq \mathrm{u}<\infty, \frac{\mathrm{b}_{2}\left(\eta_{1} \mathrm{C}_{1} \mathrm{u} \theta_{21}+\left(1-\mathrm{C}_{1}\right) \mathrm{v}_{2}\right)}{\mathrm{u}} \leq \mathrm{v}<\infty$
$\frac{e_{1}\left(u v \theta_{21} \theta_{32} \eta_{1} v_{2} C_{3}-\left(C_{1} C_{3}-C_{2}\right) u \theta_{21} \eta_{1} v_{3}-\left(C_{2}+C_{3}-1-C_{1} C_{3}\right) v_{2} v_{3}\right)}{u v}$
$\leq \mathrm{w}<\infty$
For $\quad P_{13}: 0 \leq u \leq a_{1}, \frac{b_{1}\left(1+u \theta_{21}\right)}{u} \leq v \leq \infty, \frac{e_{2}\left(\mathrm{vC}_{3} v_{2} \theta_{32}-\left(C_{3}-1\right) v_{3}\right)}{v} \leq w<\infty$
For $\quad \mathrm{P}_{14}: \mathrm{a}_{1} \leq \mathrm{u}<\infty, 0 \leq \mathrm{v}<\frac{\mathrm{b}_{2}\left(\eta_{1} \mathrm{C}_{1} \mathrm{u} \theta_{21}+\left(1-\mathrm{C}_{1}\right) \mathrm{v}_{2}\right)}{\mathrm{u}}$,

$$
\frac{\mathrm{e}_{3}\left(\mathrm{uC}_{2} \eta_{1} \theta_{21}+\left(1-\mathrm{C}_{2}\right) \mathrm{v}_{2}\right)}{u v} \leq \mathrm{w}<\infty
$$

Where $a_{1}=\frac{v_{2} \beta_{1}}{\eta_{1} \theta_{21}}, b_{1}=\frac{v_{3} \beta_{2}}{\eta_{12} \theta_{21} \theta_{32}}, e=\frac{v_{4} \beta_{3}}{\eta_{123} \theta_{21} \theta_{32} \theta_{43}}, b_{2}=\frac{v_{3} \beta_{4}}{\eta_{1} v_{2} \theta_{21} \theta_{32}}$,

$$
\begin{equation*}
e_{1}=\frac{v_{4} \beta_{5}}{\eta_{1} v_{2} v_{3} \theta_{21} \theta_{32} \theta_{43}}, e_{2}=\frac{v_{4} \beta_{6}}{v_{2} v_{3} \theta_{32} \theta_{43}}, e_{3}=\frac{v_{4} \beta_{7}}{\eta_{1} v_{2} \theta_{21} \theta_{32} \theta_{43}} . \tag{14}
\end{equation*}
$$

The integral expression for the four components may therefore, be written as follows

$$
\begin{align*}
& P_{11}=C_{2}^{*} \int_{0}^{a_{1}} \int_{0}^{b_{1}\left(1+u \theta_{21}\right) / u} \int_{e\left(1+u \theta_{21}+u v \theta_{21} \theta_{32}\right) / u v}^{\infty} f(u, v, w) d w d v d u \tag{15}\\
& P_{12}=C_{2}^{*} \int_{a_{1}}^{\infty} \int_{b_{2}\left(\eta_{1} C_{1} \theta_{21}+u+\left(1-C_{1}\right) v_{2}\right) / u}^{\infty} \int_{\int_{1}}^{\infty} f(u, v, w) d w d v d u \\
& e_{1}\left(u v \theta_{21} \theta_{32} \eta_{1} v_{2} C_{3}-\left(C_{1} C_{3}-C_{2}\right) u \theta_{21} \eta_{1} v_{3}-\left(C_{2}+C_{3}-1-C_{1} C_{3}\right) v_{2} v_{3}\right) / u v \tag{16}
\end{align*}
$$

$$
\begin{align*}
& P_{13}=C_{2}^{*} \int_{0}^{a_{1}} \int_{b_{1}\left(1+u \theta_{21}\right) / u}^{\infty} \int_{e_{2}\left(v \theta_{32} v_{2} C_{3}-\left(C_{3}-1\right) v_{3}\right) / v}^{\infty} f(u, v, w) d w d v d u \tag{17}\\
& \mathrm{P}_{14}=C_{2}^{*} \int_{a_{1}}^{\infty} \int_{0}^{b_{2}\left(\eta_{1} C_{1} \theta_{21} u+\left(1-C_{1}\right) v_{2}\right) / u} \int_{e_{3}\left(u \theta_{21} \eta_{1} C_{2}+\left(1-C_{2}\right) v_{2}\right) / u v}^{\infty} f(u, v, w) d w d v d u \tag{18}
\end{align*}
$$

Where $\mathrm{f}(\mathrm{u}, \mathrm{v}, \mathrm{w})$ is given by (13)

Series Formula for Power Component P_{11} :

Integrating out w from (15) by using the following standard result,

$$
\begin{equation*}
\int_{\beta}^{\infty} \frac{x^{m-1} d x}{\left(L_{1}+L_{2} x\right)^{m+n}}=\sum_{i=0}^{m-1} \frac{(-1)^{i}(m-1}{\left.c_{i}\right)\left(L_{1}\right)^{i}} \frac{(n+i)\left(L_{2}\right)^{m}\left(L_{1}+L_{2} \beta\right)^{n+i}}{\text { m }} \tag{19}
\end{equation*}
$$

Where ${ }^{\mathrm{m}} \mathrm{C}_{\mathrm{n}}=\frac{\Gamma \mathrm{m}}{\Gamma \mathrm{n} \Gamma(\mathrm{m}-\mathrm{n})}$ Then, we obtain P_{11} as

$$
\begin{equation*}
P_{11}=C_{2}^{*} S_{i} \int_{0}^{a_{1}} \int_{0}^{b_{1} 1+u \theta_{21} / u} \frac{u^{\frac{\eta_{23}}{2}-1} v^{\frac{v_{3}}{2}-1}(1+u+u v)^{i} d v d u}{\left(1+e+u\left(1+e \theta_{21}\right)+u v\left(1+e \theta_{21} \theta_{32}\right)\right)^{\frac{\eta_{123}}{2}+i}} \tag{20}
\end{equation*}
$$

Where $S_{i}=\frac{\sum_{i=0}^{2}-1\left(\frac{v_{4}}{2}-1\right.}{\left.c_{i}\right)(-1)^{i}}\left(\frac{\eta_{123}}{2}+i\right) \quad$
Integrating out v from (20) by using the following result,

$$
\begin{align*}
& \int_{0}^{\beta} \frac{x^{m-1}(a+b x)^{p} d x}{\left(L_{1}+L_{2} x\right)^{m+n+p}}\left.=\frac{\sum_{q=0}^{p}\left({ }^{p} C_{q}\right) a^{q} b^{p-q} \sum_{r=0}^{m+p-q-1}(m+p-q-1}{} c_{r}\right)(-1)^{r} \tag{22}\\
&\left(L_{2}\right)^{m+p-q}(n+q+r)
\end{align*} .
$$

$$
\begin{align*}
& P_{11}=\frac{C_{2}^{*} S_{i j}}{\left(D_{1}\right)^{\frac{v_{3}}{2}+i-j}} \int_{0}^{a_{1}} u^{\frac{v_{2}}{2}-1}(1+u)^{j} \times\left[\frac{1}{\left(1+e+u\left(1+e \theta_{21}\right)\right)^{\frac{n_{12}}{2}+j}}\right. \\
&-\left(1+e+u\left(1+e \theta_{21}\right)\right)^{r} \tag{23}\\
&\left(1+e+\left(1+e \theta_{21} \theta_{32}\right) b_{1}+u\left(1+e \theta_{21}+b_{1} \theta_{21}\left(1+e \theta_{21} \theta_{32}\right)\right)\right)^{\frac{n_{12}}{2}+j+r}
\end{align*} d u
$$

Where $\mathrm{ij}_{\mathrm{ij}}=\mathrm{S}_{\mathrm{i}} \frac{\left.\sum_{\mathrm{j}=0}^{\mathrm{i}}\left(\mathrm{i}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}}\right)^{\frac{v_{3}}{2}+\mathrm{i}-\mathrm{j}-1} \sum_{\mathrm{r}=0}^{\left(\frac{v_{3}}{2}+\mathrm{i}-\mathrm{j}-1\right.} \mathrm{c}_{\mathrm{r}}\right)(-1)^{r}}{\left(\frac{\eta_{12}}{2}+\mathrm{j}+\mathrm{r}\right)}$

Using the binomial expansion for $(1+u)^{j}$ and integrating out u with the help of following standard results

$$
\begin{align*}
\int_{0}^{\beta} \frac{x^{m-1}}{(a+b x)^{m+n}} d x= & \frac{B_{c_{0}}(m, n)}{a^{n} b^{m}} \tag{25}\\
& \quad \int_{0}^{\beta} \frac{x^{m-1}(a+b x)^{p}}{\left(L_{1}+L_{2} x\right)^{m+n+p}} d x=\sum_{q=0}^{p}\left({ }^{p} c_{q}\right) b^{q} a^{p-q} \frac{B_{c_{0}}(m+q, n+p-q)}{\left(L_{1}\right)^{n+p-q}\left(L_{2}\right)^{m+q}} \cdots \tag{26}
\end{align*}
$$

Where $c_{0}=\frac{L_{2} \beta}{L_{1}+L_{2} \beta}$ Then, we obtain P_{11} as

$$
\begin{equation*}
P_{11}=\frac{C_{2}^{*}}{\left(D_{1}\right)^{\frac{3_{3}}{2}+i-j}}\left[S_{i j k}\left(\frac{B_{x_{0}}\left(\frac{v_{2}}{2}+j-k, \frac{\eta_{1}}{2}+k\right)}{\left(r_{1}\right)^{\frac{\eta_{1}}{2}+k}\left(r_{2}\right)^{\frac{v_{2}}{2}+j-k}}\right)-S_{\mathrm{ijkl}}\left(\frac{\left(\mathrm{r}_{1}\right)^{\mathrm{rl}}\left(\mathrm{r}_{2}\right)^{1} \mathrm{~B}_{\mathrm{x}_{0}^{\prime}}\left(\frac{\mathrm{v}_{2}}{2}+\mathrm{k}+\mathrm{l}, \frac{\eta_{1}}{2}+\mathrm{j}+\mathrm{r}-\mathrm{k}-1\right)}{\left(\mathrm{r}_{1}^{\prime}\right)^{\frac{\eta_{1}}{2}+\mathrm{j}+\mathrm{r}-\mathrm{k}-1}\left(\mathrm{r}_{2}^{\prime}\right)^{\frac{v_{2}}{2}}+\mathrm{k}+1}\right)\right] \tag{27}
\end{equation*}
$$

Where

$$
\begin{equation*}
S_{\mathrm{ijk}}=\mathrm{S}_{\mathrm{ij}} \sum_{\mathrm{k}=0}^{\mathrm{j}}\left({ }^{\mathrm{j}} \mathrm{c}_{\mathrm{k}}\right) \tag{28}
\end{equation*}
$$

And $\quad S_{i j k l}=S_{i j k} r \sum_{\mathrm{l}=0}^{\mathrm{r}}\left(\mathrm{r}_{\mathrm{c}}\right)(-1)^{1}$
Also, $x_{0}=\frac{r_{2} a_{1}}{\left(r_{1}+r_{2} a_{1}\right\}}, x_{0}^{\prime}=\frac{r_{2}^{\prime} a_{1}}{\left(r_{1}^{\prime}+r_{2}^{\prime} a_{1}\right)}, D_{1}=\left(1+e \theta_{21} \theta_{32}\right), r_{1}=(1+e)$,

$$
\begin{equation*}
r_{2}=\left(1+e \theta_{21}\right), r_{1}^{\prime}=r_{1}+b_{1}\left(1+e \theta_{21} \theta_{32}\right), r_{2}^{\prime}=r_{2}+b_{1}\left(1+e \theta_{21} \theta_{32}\right) \theta_{21} \tag{30}
\end{equation*}
$$

Series Formula for Power Component P_{12}

Integrating out w from (16) with the help of integral given by (19), we get

$$
\begin{align*}
P_{12}= & C_{2}^{*} S_{i} \int_{a_{1}}^{\infty} b_{2}\left(\eta_{1} C_{1} \theta_{21} u+\left(1-C_{1}\right) v_{2}\right) / u \\
P_{12}= & \frac{u_{2}^{\frac{\eta_{23}}{2}-1} v^{\frac{v_{3}}{2}-1}(1+u+u v)^{i} d v d u}{\left(D_{2}\right)^{\frac{v_{3}}{2}+i-j l}}\left[\frac{\left(l_{2}\right)^{r-l} B\left(\frac{v_{2}}{2}+j+r-k-l, \frac{\eta_{1}}{2}+k+l\right)}{\left(l_{1}^{\prime}\right)^{\frac{\eta_{1}}{2}}\left(l_{2}^{\prime}\right)^{\frac{v_{2}}{2}+j+r-k-l}}\right. \\
& \left.-\frac{\left(l_{2}\right)^{l}\left(l_{1}\right)^{r-l} B_{x_{1}}^{\prime}\left(\frac{v_{2}}{2}+k+l, \frac{\eta_{1}}{2}+j+r-k-l\right)}{\frac{\eta_{1}}{2}+j+r-k-l}\left(l_{2}^{\prime}\right)^{\frac{v_{2}}{2}+k+l}\right] \tag{31}
\end{align*}
$$

Where $S_{i j k l}$ is defined in (29). Also,

$$
\begin{align*}
& x_{1}=\frac{l_{2}^{\prime} a_{1}}{\left(l_{1}^{\prime}+l_{2}^{\prime} a_{1}\right)}, D_{2}=\left(1+e_{1} \theta_{21} \theta_{32} \eta_{1} v_{2} C_{3}\right), l_{1}=\left(1-\left(C_{2}+C_{3}-1-C_{1} C_{3}\right) v_{2} v_{3} e_{1}\right), \\
& l_{2}=\left(1-\left(C_{1} C_{3}-C_{2}\right) e_{1} \eta_{1} v_{3} \theta_{21}\right), l_{1}^{\prime}=\left(l_{1}+b_{2}\left(1-C_{1}\right) v_{2}\left(1+e_{1} \theta_{21} \theta_{32} \eta_{1} v_{2} C_{3}\right)\right), \\
& \quad l_{2}^{\prime}=\left(l_{2}+b_{2}\left(1+e_{1} \theta_{21} \theta_{32} \eta_{1} v_{2} C_{3}\right) \eta_{1} \theta_{21}\right) \tag{32}
\end{align*}
$$

Series Formula for Power Component P_{13}

Integrating out w from (17) with the help of integral given by (19)

$$
P_{13}=C_{2}^{*} S_{i} \int_{0}^{a_{1}} \int_{b_{1}\left(1+u \theta_{21}\right) / u}^{\infty} \frac{u^{\frac{\eta_{23}}{2}-1} v^{\frac{v_{3}}{2}-1}(1+u+u v)^{i} d v d u}{\left[1+u\left(1-e_{2}\left(C_{3}-1\right) v_{3}\right)+u v\left(1+e_{2} C_{3} v_{2} \theta_{32}\right)\right]^{\frac{\eta_{123}}{2}+i}}
$$

We get

$$
\begin{equation*}
P_{13}=\frac{C_{2}^{*} S_{i j k l}}{\left(D_{3}\right)^{\frac{v_{3}}{2}+i-j}}\left[\frac{\left(t_{1}\right)^{r-1}\left(t_{2}\right)^{l} B_{x_{2}}\left(\frac{v_{2}}{2}+k+l, \frac{\eta_{1}}{2}+j+r-k-l\right)}{\left(t_{1}^{\prime}\right)^{\frac{\eta_{1}}{2}+j+r-k-1}\left(t_{2}^{\prime}\right)^{\frac{v_{2}}{2}+k+l}}\right] . \tag{33}
\end{equation*}
$$

Where $\mathrm{S}_{\mathrm{ijkl}}$ is defined in (29).Also,

$$
\begin{gather*}
\mathrm{x}_{2}=\frac{\mathrm{t}_{2}^{\prime} \mathrm{a}_{1}}{\left(\mathrm{t}_{1}^{\prime}+\mathrm{t}_{2}^{\prime} \mathrm{a}_{1}\right)}, \mathrm{D}_{3}=\left(1+\mathrm{e}_{2} \mathrm{C}_{3} \mathrm{v}_{2} \theta_{32}\right), \mathrm{t}_{1}=1, \mathrm{t}_{2}=\left(1+\mathrm{e}_{2}\left(1-\mathrm{C}_{3}\right) \mathrm{v}_{3}\right) \\
\mathrm{t}_{1}^{\prime}=\left(\mathrm{t}_{1}+\mathrm{b}_{1}\left(1+\mathrm{e}_{2} \mathrm{C}_{3} \theta_{32} \mathrm{v}_{2}\right)\right), \mathrm{t}_{2}^{\prime}=\left(\mathrm{t}_{2}+\mathrm{b}_{1} \theta_{21}\left(1+\mathrm{e}_{2} \mathrm{C}_{3} \theta_{32} \mathrm{v}_{2}\right)\right) \tag{34}
\end{gather*}
$$

Series Formula for Power Component P_{14}

Integrating out w from (18) by using the integral given by (19) we get;

$$
\left.\begin{array}{rl}
P_{14}= & C{ }_{2}^{*} S_{i} \times \int_{a_{1}}^{\infty} \int_{0}^{b_{2}\left(\eta_{1} C_{1} \theta_{21} u+\left(1-C_{1}\right) v_{2}\right) / u} u^{\frac{\eta_{23}}{2}-1} v^{\frac{v_{3}}{2}-1}(1+u+u v)^{i} d v d u \\
& {\left[\left(1+e_{3}\left(1-C_{2}\right) v_{2}\right)+u\left(1+\eta_{1} C_{2} e_{3} \theta_{21}\right)+u v\right]^{\frac{\eta_{123}}{2}+i}}
\end{array}\right)
$$

$-S_{i j k l}\left(\frac{\left(s_{2}\right)^{r-l} B\left(\frac{v_{2}}{2}+j+r-k-l, \frac{\eta_{1}}{2}+k+l\right)}{\left(s_{1}^{\prime}\right)^{\frac{\eta_{1}}{2}}\left(s_{2}^{\prime}\right)^{\frac{v_{2}}{2}+j+r-k-1}}\right.$

$$
\begin{equation*}
\left.\left.-\frac{\left(s_{1}\right)^{r-1}\left(s_{2}\right)^{1} B_{x_{3}^{\prime}}\left(\frac{v_{2}}{2}+k+l, \frac{\eta_{1}}{2}+j+r-k-l\right)}{\left(s_{1}^{\prime}\right)^{\frac{\eta_{1}}{2}+j+r-k-1}\left(s_{2}^{\prime}\right)^{\frac{v_{2}}{2}+k+1}}\right)\right] \tag{35}
\end{equation*}
$$

Where $\mathrm{S}_{\mathrm{ijk}}$ and $\mathrm{S}_{\mathrm{ijkl}}$ is defined in (28) and (29) respectively.

$$
\begin{align*}
& x_{3}=\frac{s_{2} a_{1}}{\left(s_{1}+s_{2} a_{1}\right)}, \quad x_{3}^{\prime}=\frac{s_{2}^{\prime} a_{1}}{\left(s_{1}^{\prime}+s_{2}^{\prime} a_{1}\right)}, \quad s_{1}=\left(1+e_{3}\left(1-C_{2}\right) v_{2}\right), \quad s_{2}=\left(1+e_{3} C_{2} \eta_{1} \theta_{21}\right) \\
& s_{1}^{\prime}=\left(s_{1}+b_{2}\left(1-C_{1}\right) v_{2}\right), s_{2}^{\prime}=\left(s_{2}+b_{2} C_{1} \eta_{1} \theta_{21}\right) \tag{36}
\end{align*}
$$

$$
\begin{aligned}
& A_{i 3}=\frac{\sum_{i=0}^{\frac{v_{3}}{2}-1}\left(\frac{v_{3}}{2}-1 c_{i}\right)(-1)^{i}}{\left(\frac{\eta_{12}}{2}+3+i\right)\left(\frac{\eta_{123}}{2}+3\right)}, A_{i 3}^{\prime}=\frac{\sum_{i=0}^{2}\left(\frac{v_{3}}{2} c_{i}\right)(-1)^{i}}{\left(\frac{\eta_{12}}{2}+2+i\right)\left(\frac{\eta_{123}}{2}+3\right)}, \\
& A_{i 3}^{\prime \prime}=\frac{\sum_{i=0}^{\frac{v_{3}}{2}+1}\left(\frac{v_{3}}{2}+1 c_{i}\right)(-1)^{i}}{\left(\frac{\eta_{12}}{2}+1+i\right)\left(\frac{\eta_{123}}{2}+3\right)}, A_{i 3}^{\prime \prime \prime}=\frac{\sum_{i=0}^{\frac{v_{3}}{2}+2}\left(\frac{v_{3}}{2}+2 c_{i}\right)(-1)^{i}}{\left(\frac{\eta_{12}}{2}+i\right)\left(\frac{\eta_{123}}{2}+3\right)}
\end{aligned}
$$

RESULT

We obtained the power function of CST procedure denoted by $P_{T}(\theta)$ in (8) by adding the series formulae for power components $\mathrm{P}_{11}, \mathrm{P}_{12}, \mathrm{P}_{13}$ and P_{14} from equation (27), (31), (33) and (35) respectively in case when η_{1}, v_{2}, v_{3} and v_{4} i.e. the degrees of freedom for various sources of variation are even numbers i.e. $P_{T}(\theta)=P_{11}+P_{12}+P_{13}+P_{14}$.

REFERENCES

1. Dangi. Inference for variance components in unbalanced nested design, unpublished Ph . D. thesis, M.L.S. University, Udaipur. 2006.
2. A.E. Paull: On a preliminary test for pooling mean squares in the analysis of variance. Ann. Math. Stat. 1950, 21, 539-556.
3. C.V. Rao and K.P. Saxena: Some results on size in a mixed model using two preliminary tests of significance. J. Ind. Soc. Agric. Stat. 1980, 32, 62-70.
4. H. Bozivich, T.A. Bancroft and H.O. Hartley: Power of analysis of variance test procedures for certain incompletely specified model-I. Ann. Math. Stat. 1956, 7, 10171043.
5. L. Singh and K.P. Saxena: On power of sometime pooled test in a split plot design. Sankhya-B. 1980, 42, 153-164.
6. M.A. Ali and S.R. Srivastava: On certain approximations of power of a test procedure using two preliminary tests in a mixed model. Bull. Math Stat. 1981, 19 (3), 103-113.
7. R. Mead, T.A. Bancroft and C.P. Han: Power of analysis of variance test procedures for incompletely specified fixed models. Annals of Statistics. 1975, 3, 797-808.
8. R.L. Anderson and T.A. Bancroft: Statistical theory in research. Hill Book Company, New Yark. 1952.
9. S.R. Searle: Linear models. John Wiley, New York 1971.
10. S.R. Srivastava and H. Bozivich: Power of certain analysis of variance test procedures involving preliminary tests. The $33^{\text {rd }}$ Session of International Statistical Institute, Paris. 1961.
11. T.A. Bancroft: On biases in estimation due to the use of preliminary tests of significance. Ann. Math. Stat. 1944, 15, 190-204.
12. W.S. Brar. Estimation and testing of variance components in unbalanced designs. Unpublished Ph.D. Thesis, University of Rajasthan, Jaipur, India. 1990.

Corresponding author: Anita Mehta

Department of Mathematics \& Statistics, Mohanlal Sukhadia University, Udaipur, India.

