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Abstract: Previous researchers have revealed the anharmonicity of the lattice waves to 

cause deviation in specific heat from Debye T3 law. The energy spectrum of phonons can 

not be fully described by the Debye law. For anharmonicity of lattice waves, this 

contribution must be expected for metals and insulators also. Specific heat of metals, viz, 

Al, Cu, Ag, Ni, Fe, Pd and Pt was identified with the electronic contribution. Later 

experiment revealed the linear term in specific heat of almost all metals, at low 

temperatures. But intensive study of the transport properties namely thermoelectric 

properties, thermal and electrical conductivities of metals at low temperatures finds 

deviation of the electrons from the free electron model. The light of the recent 

development in this regard the earlier notion of linear temperature dependent term of 

specific heat appears to be doubtful, because electrons may not. Debye did not take into 

account the anharmonicity of the lattice wave in his theory of specific heat of solids at 

low temperatures. 

Keywords: Thermal Conductivity, Anharmonic effect, Thermoelectric Power, Electron 

diffusion, Phonon drag. Wiedmann-Franz law.  

http://www.jcbsc.org/


The Existence …                                                                                                                              P. Poddar et al. 

297 J. Chem. Bio. Phy. Sci. Sec. C, May 2018 – July 2018, Vol. 8, No. 3; 296-306; 
[DOI: 10.24214/jcbps.C.8.3.29606.] 
 

 

INTRODUCTION 

Thermal conductivity and phonon interaction are intimately related to the specific heat of electron. 

Moreover, thermoelectric properties give details of the nature of the charge carriers as well. Thus the 

study of electrical resistivity, thermal conductivity and thermoelectric properties would give significant 

information regarding the existence of anharmonic effect due to phonon-phonon interactions and its 

contribution to specific heat at T<θ/10. Hence we would like to study the thermal conductivity and 

thermoelectric properties of some metals Viz. Au, Ag, Cu, Na, Li, Zn, Fe, Al, Pt, Ni and Co at T<θ/10 

where θ being the Debye-temperature for a metal.  

RESULTS AND DISCUSSION 

Transport of heat in a solid is due to conduction electrons and thermally excited phonons. In metals, 

electronic component solely dominates as the lattice component is supposed to be vanishingly small. The 

thermal conductivity K, for a simple metal at low temperatures (T<θ/10) is written as Bloch1, Wilson2, 

Sondheimer3. 

K = T/(β+bT3)          (1) 

Which may be rearranged to, 

 = β/T + bT3          (2) 

Where β and b are constants for a specimen of a metal. The first term in the right hand side of equation 

(2) is the residual thermal resistivity caused by impurities and geometrical factors of the specimen and the 

second term is the ideal thermal resistivity due to lattice vibrations. On the basis of free electron gas 

theory, equation (1) may be understood as, 

K =  n Cve V           (3) 

Where n = number of conduction electrons, 

 Cve = specific heat of electrons, 

 V = average velocity of the electrons. 

  = mean free path of the electrons. 

n and v are practically constant in noble and alkali metals. 

Cve  T [Sommerfeld4] 

and  T3 (in pure metal) as the density of thermally excited phonons which scattered conduction 

electrons varies as T3 according to Debye T3 law at low temperatures (T<θ/10). In the presence of 

impurities in the specimen of the metal, the conduction electrons are scattered by impurities and 
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geometrical factors [Bloch 1], leading to a factor β. A close examination of equation (1) in the light of 

experimentally observed K of metals finds its failure in several metals. 

In equation (1) and (2), b is expressed as,  

b = 95.3 (n/na) .θ2 

and β = /Ln        
   (4) 

Where n/nc = density of conduction electrons per atom.  

= thermal conductivity at T  

θ = Debye- temperature  

= residual electrical resistivity 

and Ln = normal Lorentz number. 

An excellent agreement between the observed and calculated values of β is advocated, but not in the 

values of b [Berman and Mac Donald5, Hulm6]. The calculated value of θ is too much larger than the 

observed value [Wilson2]. These discrepancies point out the short commings in the assumptions that  

(i) the electrons are free even at very low temperatures. 

(ii) the transport of heat in metals is solely by conduction electrons. 

(iii) no phonon other than those obeying Debye T3-law is available for scattering the conduction 

electrons, on which the two term equation of K is based. However, a three term empirical 

equation, 

K= T / (β+ T2 + bT3)         (5) 

is found to be more competent. 

According to Schriempf7 (1968), the term T2 is due to electron-electron scattering which leads to a T2- 

term in electrical resistivity also. β,  and b are constants. Equation (5) may be obtained from the 

following considerations. 

Thermal resistivity 

 = / (LnT) + / (LnT) + / (LnT)      (6) 

Which has been based on the validity of Widemann-Franz law i.e.  

K/  = LnT 

is the electrical conductivity . At low temperatures, electrical resistivity ( = ) may be expressed as,  

= + +           (7) 
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Where  = residual electrical resistivity 

= ideal electrical resistivity. 

And = resistivity due to electron-electron scattering. 

Equation (6) may be written as, 

 =  o + i +          (8) 

Where  = thermal resistivity and  is the thermal resistivity due to electron-electron scattering. For 

 = 0, from equations (2) and (8) we get, 

o + i = β/T +bT2          (9) 

Equation (6) may now be written, as 

T/K = β+bT3+  /Ln 

Since  T2;  =  /Ln =  T2 (say) which leads to  

T/K = β + bT3 +  T2. This is equation (5). 

If we express  = AT2, then AT2 = Ln T2  i.e. A = Ln                           (10) 

Equation (10) may be used to examine the contention of electron-electron scattering in thermal 

conductivity. 

The present study finds the following equations fit to the observed thermal conductivity data [Ho, Powell 

and Liley8] in the temperature zone T< θ/10, b and  have been obtained from the slope and intercept of 

the curve (T/K-β) Vs T on the basis of least square method. The correlation factor γ for the linear 

relationship, listed in Table 1 is very satisfactory in each case. β is taken from the literature [Ho, Powell 

and Liley8 ]. Value of β, b and  are reported in the table. 

Al : K = T/ (0.0243-0.26 10-5 T2 + 1.883 10-5 T3)     (11) 

    (2 < T < 20 K) 

Standard Deviation 1.3 % 

Cu : K = T/ (0.0237-3.49 10-5 T2 + 2.146 10-5 T3)     (12) 

    (2 < T < 20 K) 

Standard Deviation 0.996 % 

Ag : K = T/ (0.0254-4.309 10-5 T2 + 3.853 10-5 T3)     (13) 

    (2 < T < 14 K) 

Standard Deviation 1.84 % 

Au : K = T/ (0.188-15.703 10-5 T2 + 13.483 10-5 T3)     (14) 

    (2 < T < 20 K) 

Standard Deviation 2.47 % 

Na : K = T/ (0.06-24.267 10-5 T2 + 41.482 10-5 T3)      (15) 

    (2 < T < 30 K) 
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Standard Deviation 1.73 % 

K : K = T/ (0.082-33.482 10-5 T2 + 218.06 10-5 T3)      (16) 

    (2 < T < 10 K) 

Standard Deviation 2.4 % 

Li : K = T/ (1.52-25.11 10-5 T2 + 16.642 10-5 T3)      (17) 

    (2 < T < 20 K) 

Standard Deviation 1.108 % 

Pt : K = T/ (0.433-43.85 10-5 T2 + 42.741 10-5 T3)      (18) 

    (2 < T < 16 K) 

Standard Deviation 0.8 % 

Fe : K = T/ (0.585-0.2633 10-5 T2 + 8.876 10-5 T3)      (19) 

    (2 < T < 20 K) 

Standard Deviation 0.4 % 

Co : K = T/ (3.71-15.173 10-5 T2 + 10.873 10-5 T3)      (20) 

    (6 < T < 20 K) 

Standard Deviation 0.57 % 

Ni : K = T/ (0.46-1.985 10-5 T2 + 9.372 10-5 T3)      (21) 

    (2 < T < 20 K) 

Standard Deviation 1.55 % 

Zn : K = T/ (0.0525-165.73 10-5 T2 + 32.64 10-5 T3)      (22) 

    (8 < T < 20 K) 

Standard Deviation 0.56 % 

Table- 1: Slope, intercept and Correlation factor of the curves between T/K and T3 

Metals Correlaions 

Factor (γ) 

Slope -5 Intercept -5 Temperature Zone 

in K 

Li 0.9997 15.9599 1.4889 5  25 

Na  1.000 35.1878 0.0599 3  6 

K 0.9985 149.9239 0.8606 10  18 

0.9998 218.7000 0.0778 2  9 

Cs 0.9964 249.9739 16.4682 14  20 

Mg1 0.9999 8.0673 0.0967 5  25 

Mg2 0.9999 8.3887 0.7700 6  25 

Be 0.9993 1.0045 -0.0797 4  100 

Cu 0.9996 1.8509 0.0231 3  13 

Ag 0.9988 3.9717 0.0211 5  16 

Au 0.9994 13.3883 0.1727 5  20 
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B 0.9994 5.1380 6.0016 35  50 

Ge 0.9982 8.9100 0.5934 15  25 

S 0.9908 10329.3700 19.1283 5  20 

 

Zn 

0.9998 25.8122 -0.0632 8  25 

0.9946 9.4093 0.0511 2  6 

Th 0.9996 137.6804 0.8801 5  20 

Sb 0.9974 91.7308 1.3228 8  20 

In all the above equations from (11 to 22); T2 term exists uniformly with -ve sign. Here (n/na) has also 

been calculated from equation (4) using the values of b in Table 2. For each metal, the value of (n/na) is 

much smaller than the expected value (for noble and alkali metals, n/na 1) 

Table – 2: Parameters β,  and b of three term equations of Thermal conductivity of metals at low 

temperatures. 

 

Metals β cm. deg. w-1 (cm.w-1) b (cm.w-1 deg.-1) 

Na 0.06 -2.4267 4.1482 

Cu 0.0237 -0.3490 0.2146 

Pt 0.433 -4.3849 4.2741 

Ni 0.46 -0.1985 0.9372 

Pb 0.0353 -128.81 59.102 

Zn 0.0525 -16.573 3.2636 

 

These results stand against the contention of electron-electron scattering leading to resistivity and quasi 

free conduction electron model at very low temperatures. 

The thermo-electric power of metals (viz Au, Ag, Cu, Pt, Zn) have been widely studied by several 

workers, [Blatt 9Bernard10, Ziman11; Lawrence 12, Rumbo13; Mac Donald 14; Guenaultand Hawksworth15; 

Poddar and Ranju16] at low temperatures. The main findings of these studies may be summarised as- 

(i) a peak in thermoelectric power, 

(ii) the variation of thermoelectric power as T3 

(iii) negative in character for noble metals viz. Ag, Au and Cu, 

(iv) straining of the specimen suppresses the T3 component of thermo-electric power and  

(v) on alloying the metal, the peak is attenuated. 

The peak in thermopower and T3 – variation are interpreted as due to the phonon drag effect. This 

phenomenon may be understood as follows-  
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The phonons at low temperatures, if they find nothing else to collide with (including themselves) must 

always collide ultimately with conduction electrons, thus imparting their momentum to the electrons and 

giving rise to thermoelectric force. The presence of impurity in the sample reduces the probability of 

phonon-electron collision and hence reduces the thermoelectric force. The phonon-drag thermo-electric 

power Sg is written as Sg = 1 / (3 Ne Sg) Cg where Cg = lattice specific heat per unit volume. N = number 

of conduction electrons per unit volume. Since Cg T3 (According to Debye) 

Hence Sg T3 

Alloying attenuates the lattice thermal conductivity which causes attenuation in the peak of phonon drag. 

The –vethermopower has been interpreted as due to electron-electron and electron-phonon scattering. 

These explanations however have been criticized by several workers [Guenaultand Hawksworth15; 

Lawrence12; Bernard 10; Poddar and Ranju16]. Guenault and Hawksworth15 suggested a crossover from 

dirty regime at low temperatures towards a pure regime at higher temperatures for the change of sign of 

the thermopower. A change of scattering mechanism is expected to give a change in thermopower, 

whether S arises from electron diffusion or phonon drag. One should, therefore expect a change in the 

form of thermopower between the lowest temperature (where electron-impurity scattering dominates) and 

the region above about 10K (where electron-phonon scattering dominates). The temperature T* around 

which the cross-over occurs may be estimated as follows. For a single band approximation, the 

thermopower of a metal at temperature T is given by, 

S = (So o+ST T)/ o+ T)        (23) 

Where o and T are the thermal resistances due to residual and phonon scattering respectively; So and ST 

are the characteristic thermopowers for the two scattering mechanisms. Clearly the cross-over from So to 

ST occurs at temperature T* at which o T. Using the method of Guenaultand Howksworth15. T* is 

obtained as  

T*3 = 300 θ2/ CRR         (24) 

Where θ is the Debye temperature; R R is the resistance ratio i.e.  is defined by the 

equation  

T = CT2
∞ /θ2          (25) 

Where ∞ is thermal resistivity at T .  

From equations (24) and (25), we get. 

T* = (300T2
∞ ) / T.         (26) 

At 300 K, we may take 300 ∞ for simple metals as thermal conductivity remains constant. 

At this temperature Wiedmann-Franz law holds good i.e. 

K/  = LnT 
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or  = LnT 

i.e. T/  = 1/LnT        (27) 

This equation gives / = 1/ (300Ln)  

And so, T*3 = (300T2) / T)  1/300Ln = (T2 )/ TLn)    (28) 

In a normal pure metal, at T= 4.2K the residual thermal resistivity is much greater than that due to lattice 

vibrations and hence we may take 4.2 o, the residual resistivity. Also at very low temperatures, for the 

residual resistivity, the Wiedmann-Franz law holds well [Bermann and Mac Donald5; Hulm6].  

i.e. 4.2 Ln (4.2) o Ln (4.2).  

At low temperatures (T < θ/10), the two term equation for thermal- conductivity is written as,  

K = 1/ (β+bT3)          (29) 

for β>>bT3, this equation reduces to  

1/K = β/T = o 

At T= 4.2 K, we have  

β/4.2 = 4.2 o 

i.e. β = 4.2 o 

So, equation (28) may be written as  

T*3 = (T2
o 4.2)/ T = βT2/ T                  (30) 

At T*, o T which is discussed above. Hence we may write from equation            (29) 

1/K* = o + bT*2 = 2bT*2 

[Since o = T* = bT*2] 

or, T* = 1/K* = 2bT*2 

Here T* and K* are the values of T and K at T*. With this value of T*, equation (30) gives  T*3 

=T*2/ (2bT*2) β = β/2b 

or, T* =          (31) 

From equation (30); Topt at which Knax (the maximum thermal-conductivity) occurs, may be obtained as  

Topt =                  (32) 

[from the condition, dK/dT = 0. d2K/dT2<0 at T = Topt] From equations (31) and (32), it is clear that  

T* = Topt          (33) 
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Equations (31), (32) and (33) imply that Topt and T* increase with β and decrease with b. As the metal 

becomes more and more impure, β increases more and the regime of impurity extends towards higher 

value of T*. This is in confirmity with the contention of Guenault and Hawksworth15. On alloying the 

metal the amplitude of lattice vibrations lowers down and hence an attenuation in the value of b is 

expected and it would lead to an increase in T*. This conclusion supports the results reported by Guenault 

and Hawksworth15;Poddar and Ranju16. 

The –vethermopower revealed in noble metals may not be limited to these metals only but it may be in 

other metals also as (T* = Topt) appears in the thermal conductivity temperature curve (i.e. K Vs T) for 

almost all metals [Ho, Powell and Liley8]. The phonon-drag peak in thermopower should occur at the 

sane temperature at which thermal conductivity peak occurs at T* = Topt; and T* and Topt are the functions 

of the same variables β and b. The peak in thermopower is interpreted as due to phonon-drag and we may, 

ultimately, reach the conclusion that the thermal conductivity peak is also due to phonon drag. The 

phonon-drag contribution dominates over the electron-diffusion contribution below T* and hence the 

dominance of phonon-drag contribution to thermal- conductivity may clearly be expected. It means that 

the phonons are in thermal equilibrium in metals even at very low temperatures. This is in conformitywith 

the claims of Klemens17 that the anharmonicity of lattice vibrations is responsible for maintaining the 

thermal equilibrium in phonon system. In this regards, it also supports the reports by Tosi and Fumi18. 

 

 

 

Fig. 1: Plots between T/K and T3 of insulators (Be, Ge, S, B and Sb) [The scales and origin 

have been suitably altered to portray the desired shape of the curves]. 
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Fig. 2: Plots between T/K and T3 of metals [The scales and origin have been suitably altered to portray the 

desired shape of the curves]. 

 

 

Fig. 3 Dependence of thermal conductivity (K) on temperature (T) of metals at very low temperatures 

[The origin and the magnification scales along the axis have been suitably altered to present just the 

desired shape of the curves]. 

CONCLUSION 

The energy spectrum of phonons cannot be fully described by the Debye law. Martin suggests that the 

contribution to specific heat due to anharmonic effects caused by volume expansion is positive for alkali 

metals at temperature T. The anharmonic contribution if it exists may not be decribed completely by a 

few terms of function of temperature to fit in the data of thermal conductivity of Al, Cu, Ag, Au, Na, K, 
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Li, Pt, Fe, Co, Ni, & Zn in the temperature zone 1-30K. The first two terms dominate over, but the results 

of the present analysis demands the introduction of some term to the space between first and the second 

term of some metals in the light of equation. A unique value of θ for a metal cannot be taken because 

different sources. Positive contribution of either electrons or anharmonic lattice waves to specific heat 

whereas equation does not do. It is not unjustified because at very low temperatures anharmonicity due to 

volume expansion is negligible and that due to phonon-phonon interaction dominates. These results 

confirm the contention of Tosi and Fumi, Barron and Klemense. Since in an insulators the possibility of 

electronic contribution can be totally ruled out. This equation also emphasizes on the contribution of 

anharmonicity of lattice waves. Heat of metals at low temperatures is due to the anharmonicity of lattice 

waves rather than the electrons. 
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