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Abstract: The propagation of surface waves in a non-homogeneous, isotropic, thermo-

viscoelastic medium of higher order including time rate of strain has been discussed in 

this study. The problem has been solved analytically using linear inhomogeneity and the 

exact solution of velocity equations has been obtained for Stoneley, Rayleigh and Love 

type surface wave.  In fact, these equations are in agreement with the corresponding 

classical results when the medium is free from viscosity, temperature and 

inhomogeneity. 
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INTRODUCTION 

The formulations and solutions of many problems of linear wave-propagation for homogeneous media are 

available in the literature of continuum mechanics of solids. In recent years, however, sufficient interest has 

arisen in the problem connected with bodies whose mechanical properties are functions of space, i.e. non-

homogeneous bodies. This interest is mainly due to the advent of solid rocket propellants, polymeric 

materials and growing demand of engineering and industrial applications.  

The dynamic theory of thermo-viscoelasticity is the study of dynamical interaction between thermal and 

mechanical fields in solid bodies and is of great importance in various fields of engineering such as 

earthquake engineering, aeronautics, soil engineering etc. Since our earth is a spherical body having finite 

dimension and the elastic waves generated must receive the effect of the boundaries. Naturally, this 

phenomenon leads us to the investigation of boundary waves or surface waves, i.e. the waves, which are 
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confined to some surface during their propagation. As a result, Stoneley
1
, Bullen

2
, Ewing et al.

3
, Hunters

4
 

Jones
5
and Jeffreys

6
 have developed the theory of surface waves.  

The effect of gravity on wave propagation in an elastic solid medium was first considered by Bromwich
7
, 

treating the force of gravity as a type of body force. Love
8
 extended the work of Bromwich

 7
investigated the 

influence of gravity on super-facial waves and showed that the Rayleigh wave velocity is affected by the 

gravity field. Sezawa
 9

 studied the dispersion of elastic waves propagated on curved surfaces. Kakar et al.
10 

studied the surface wave propagation in non homogeneous, general magneto-thermo, viscoelastic media. 

Haskell
11

 studied the dispersion of surface waves in multilayered media. A source on elastic waves is the 

monograph of Ewing et al.
12

. Biot
 12

 studied the influence of gravity on Rayleigh waves, assuming the force 

of gravity to create a type of initial stress of hydrostatic nature and the medium to be incompressible. De and 

Sengupta
13

 studied many problems of elastic waves and vibrations under the influence of gravity field. 

Sengupta and Acharya
 14

 studied the influence of gravity on the propagation of waves in a magnetoelastic 

layer. Brunelle
 15

 studied the surface wave propagation under initial tension of compression. Lamb
16

 

discussed the waves in elastic plate.  Wave propagation in a thin two-layered laminated medium with stress 

couples under initial stresses was studied by Roy
 17

. Datta
18

 studied the effect of gravity on Rayleigh wave 

propagation in a homogeneous, isotropic elastic solid medium. Goda
19

 studied the effect of non-

homogeneity and anisotropy on Stoneley waves. The details are found in the work of Eringen and Sahubi
20

. 

Sharma and Kaur
21

 studied Rayleigh waves in rotating thermoelastic solids with voids. Chattopadhyay et 

al.
22, 23

 studied the propagation of G-type seismic waves in viscoelastic medium and they also discussed the 

effect of point source and heterogeneity on the propagation of SH- waves. Abd-Alla and Ahmed
24

 studied 

the Rayleigh waves in an orthotropic magneto-elastic medium under gravity field and initial stress. Paria
25

 

discussed love waves in granular medium. Recently, Kakar et al.
26

 analyzed a five-parameter Viscoelastic 

model under Dynamic Loading. 

In this work, the problem of n
th
 order viscoelastic surface waves involving time rate of strain, the medium 

being isotropic and non-homogeneous has been studied under the influence of temperature. Biot’s theory of 

incremental deformations has been used to obtain the wave velocity equation for Stoneley, Rayleigh and 

Love waves. Further, these equations are in complete agreement with the corresponding classical results in 

the absence of viscosity and thermal field, non-homogeneity of the material medium. 

FORMULATION OF THE PROBLEM 

Let M1 and M2 be two non-homogeneous, viscoelastic, isotropic, semi-finite media. They are perfectly 

welded in contact to prevent any relative motion or sliding before and after the disturbances and that the 

continuity of displacement, stress etc. hold good across the common boundary surface. Further the 

mechanical properties of M1 are different from those of M2. These media extend to an infinite great distance 

from the origin and are separated by a plane horizontal boundary and M2 is to be taken above M1. 

Let Oxyz be a set of orthogonal Cartesian co-ordinates and let O be the any point on the plane boundary and 

Oz point vertically downward to the medium M1. We consider the possibility of a type of wave traveling in 

the direction Ox, in such a manner that the disturbance is largely confined to the neighborhood of the 

boundary which implies that wave is a surface wave. 

It is assume that at any instant, all particles in any line parallel to Oy having equal displacement and all 

partial derivatives with respect to y are zero. Further let us assume that u, v, w is the components of 

displacements at any point (x, y, z) at any time t. 

The dynamical equations of motion for three-dimensional non-homogeneous, isotropic, viscoelastic solid 

medium in Cartesian co-ordinates are 
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Where be the density of the material medium and 
ij
 = 

ji V i, j are the stress components. 

It is assumed that prior to the existence of any disturbance both the media are everywhere at the constant 

absolute temperature T
0
. 

The stress-strain relations for general isotropic, thermo, viscoelastic medium, are 

ij= 2D eij + (D – DT )ij                                                                                                                           (2) 

Where, 

=
u v w

x y z

  

  
  , D, D, Dare elastic constants                                                                                     (3) 

Introducing eq. (2) in eqs (1a), (1b), (1c), we get 
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We assume that the non-homogeneities for the media M1 and M2 are given by 
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Where 0, M0, '0, '0 are elastic constants, whereas 0, '0are thermal parameters are 0, '0, m, n are 

constants. 
K
, 

K
 (K = 0, 1, 2 ... n) are the parameters associated with K

th
 order viscoelasticity and 

K 
(K = 1, 

2... n) are the thermal associated with K
th

 order. T is the absolute temperature over the initial temperature T
0
. 

Due to temperature rise of the material medium, it has been observed that all the parameters representing 

elastic property, the effect of viscosity and thermal field depends on the temperature and ultimately depends 

on time t. In a thermo viscoelastic solid, the thermal parameters K (K = 0, 1 ... n) are given by 


K
 = (3

K
 + 2

K
) t, where t be the coefficient of linear expansion of solid. 
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To investigate the surface wave propagation along the direction of Ox, we introduce displacement potential 

(x, z, t) and (x, z, t) which are related to the displacement components as follows: 
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Substituting eq. (8) in eqs (6a), (6b) and (6c), we get 
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To determine T, Fourier’s law of heat conduction 
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Where K be the thermal conductivity and obeys the law as given by K = K0 emz, p = 0

0

K


 and Cbe the 

specific heat of the body at constant volume. 

Further, similar relations in medium M2 can be found out by replacing 
K
, 

K
, 

K
, 0 by '

K
, '

K
, '

 K
, '

0
and 

so on. 

SOLUTION OF THE PROBLEM 

Now our main objective to solve eqs (9a), (9b), (9c) and eq. (11) 
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For this, we seek the solutions in the following forms. 
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1
 (z), h (z)] ei(x – ct)                                                                                                         (12) 

Using eq. (12) in eqs (9a), (9b), (9c) and eq. (11), we get a set of differential equations for the medium M1 

as follows: 
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and those for the medium M2 are given by 
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Eqs (13) and (15) must have exponential solutions in order that f, g, T1, h will describe surface waves, and 

they must become varnishing small as z . 

Hence for the medium M1 
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Wherej and 'j (j = 1, 2, 3) are the real roots of the eqs 

6 + 1
5 +2

4 +3
3 + 4

2 + 5+6 = 0,                                                                                                    (18) 

Where, 

1 = 2m {1 + f1
2}, 2 = K1

2 + A + 4m2 + h1
2 + Bg1

2,                                                                                           (19a)

3 = 2mA + 2f1
2 m (K1

2 + A) + 2mh1
2 + 2mBg1

2                                                                                                (19b)                                                                                           

4 = AK1
2 + 4m2A f1

2 + (K1
2 + A) h1

2 + 2 m2l1
2 f1

2 + BK1
2 g1

2 – 2Bg1
2,                                               (19c) 

5 = 2mAK1
2 f1

2 + 2mAh1
2 – 2m 2Bg1

2,                                                                                                           (19d) 

 6 = AK1
2 h1

2 + A2 m2 ll
2 f1

2 – 2B K1
2 g1

2.                                                                                                  (19e) 

'6 + '1'5 + '2'4 + '3'3 + '4'2 + '5' + '6 = 0                                                                                          (20) 

Where, 

'1 = 2l {1 + f1'2}, '2 = K1'2 + A' + 4l2 + h1'2 + B'g1'2,                                                                                        (21a)

'3 = 2lA' + 2lf1'2 (K1'2 + A) + 2lh1'2 + 2l B'g1'2,                                                                                                  (21b) 
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'4= A'K1'2 + 4l2A' f1'2 + (K1'2 + A') h1'2 + 2l2l1'2 f1'2 + B' K1'2 g1'2 – 2 B' g1'2,                                     (21c) 

'5 = 2lA'K1'2 f1'2 + 2lA'h1'2 – 2l2B'g1'2,                                                                                                            (21d) 

'6 = A'K1'2 h1'2 + A'2l2 ll'
2 f1'2 – 2B' K1'2 g1'2.                                                                                            (21e)                                                                                              

m + m2- 4 K1
2) ½}/ 2,                                                                                                                                      (21f) 

'l + l2- 4 K1'2) ½}/ 2.                                                                                                                                        (21g) 

Where the symbol used in eqs (19) and (21) are given by eqs (14) and (16). 

The constants Aj, Bj, Cj (j = 1, 2, 3) are related with A'j, B'j, C'j (j = 1, 2, 3) in eqs (17a) and (17b) by means 

of first equations in eqs (13) and (15). 

Equating the coefficients of 3 31 2 1 2 '' '
, , , , ,

z zz z z ze e e e e e
        

to zero, after substituting eqs (17a) and 

(17b) in the first and 3rd equations of eq. (13) and eq. (15) respectively, we get 

A2= 1 A1, B2 = 2 B1, C2 = 3 C1,                                                                                                                           (22a) 

A3= 1 A1, B3 = 2 B1, C3 = 3 C1,                                                                                                                          (22b) 

  

Where, 

j=  
2

1

2 2

12j j

i ml

m K



 



 
 (j = 1, 2, 3),                                                                                                                         (23a) 

j= 
2

1

1

g
 [j

2 – 2m f1
2j + h1

2 + i m f1
2j] (j = 1, 2, 3).                                                                                   (23b) 

Similar result holds for medium M2 and usual symbols replacing by dashes respectively. 

BOUNDARY CONDITIONS 

 (i) The displacement components, temperature and temperature flux at the boundary surface between the 

media M1 and M2 must be continuous at all times and positions. 

i.e. 

1

, , , ,
M

T
u w T p

z






 
 
 

= 

2

, , , , '
M

T
u w T p

z






 
 
 

 

(ii) The stress components 31, 32, 33must be continuous at the boundary z = 0. 

i.e. 
1

31 32 33, ,
M

   =  
2

31 32 33, ,
M

   at z = 0 respectively 

Where,  

31=
2 2 2

2 2
2D

x z x z


     

   

 
  

 
,                                                                                                                   (24a) 

32 = D
z






,                                                                                                                                                             (24b) 
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33 =
2 2

2

2
2 BD D D T

z x z
 

   


  

 
    

 
.                                                                                                (24c) 

Applying the boundary conditions, we get 

A1 (1 – i 11) + B1 (1 – i 22) + C1 (1 – i 33) – A'1 (1 – i '1'1) – B'1 (1 – i '2'2) – C'1 

(1 – i '3'3) = 0 

                                                                   

(25a) 

C = C'                                                                                                                                                                             (25b) 

A1 (1 + i1) + B1 (2 + i2) + C1 (3 + i3) – A'1 ('1 + i'1) – B'1 ('2 + i'2) – C'1 ('3 + i'3) = 0              (25c) 

1A1 + 2 B1 + 3C1 = '1A'1 + '2 B'1 + '3C'1                                                                                                    (25d) 

p11A1 + p22 B1 + p33C1 – p' '1'1A'1 + p''2'2 B'1 – p''3'3C'1 = 0                                           (25e) 

*mK
[(2i 1 + 1 + 1

21) A1 + (2i 2 + 2 + 2
22) B1 + (2i 3 + 3 + 3

23) C1] = 

*m'K
[(2i '1 + '1 + 1'2'1) A'1 + (2i '2 + '2 + 2'2'2) B'1+ (2i '3 + '3 + 3'2'3) C'1]                            (25f) 

*mK
[– 4C]= *m'K

[– '4 C']                                                                                                                                       (25g) 

A1 [( *lK
+ *( )e K

2

0
H ) (1

2 – 1) + 2 *mK
(1

2 –i1) – *bK
1] + B1 [( *lK

+ *( )e K
2

0
H ) (2

2 – 1)  

+ 2 *mK
(2

2 –i2) – *bK
2] + C1 [( *lK

+ *( )e K
2

0
H ) (3

2 – 1) + 2 *mK
(3

2 – i3) – *bK
3] = 

A'1 [( *l'K
+ *( ' )e K

2

0
H )(1'2–1)+2 *m'K

(1'2–i'1)– *b'K
'1]+ B'1 [( *l'K

+ *( ' )e K
2

0
H ) (2'2 – 1)  

+ 2 *m'K
(2'2 – i'2) – *b'K

'2] +C'1[( *l'K
+ *( ' )e K

2

0
H ) (3'2–1) + 2 *m'K

(3'2 – i'3) – *b'K
'3]              (25h)   

where, j= 
j


, 'j = 

' j


, j = 1, 2, 3 

and 

*K =  
0

n
K

K

K

i c 


 , *mK =  
0

n
K

K

K

i c 


 , *bK =  
0

n
K

K

K

i c 


 , 

*'Kl  =  
0

'
n

K

K

K

i c 


 , *m'K =  
0

'
n

K

K

K

i c 


 , *b'K =  
0

'
n

K

K

K

i c 


 , 

From eqs (25b) and (25g), we have  

C = C' = 0.  

Thus there is no propagation of displacement v. Hence SH-waves do not occur in this case. 

Finally, eliminating the constants A1, B1, C1, A'1, B'1, C'1, from the remaining equations, we get 

det (aij)= 0, i, j = 1, 2, 3, 4, 5, 6.                                                                                                                    (26) 

Where, 

 a11 = 1 – i11, a12 = 1–i22, a13 = 1–i33, a14 = (i '1'1–1),  
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a15 = (i '2'2–1), a16 = (i '3'3 – 1), 

a21 = 1 + i1, a22 = 2 + i2, a23 = 3 + i3, a24 = ('1 + i '1), a25 = ('2 + i'2), 

a26 = ('3 + i'3), 

a31 = 1, a32 = 2, a33 = 3, a34 = – '1, a35 = –'2, a36 = –'3, 

a41 = p11, a42 = p22, a43 = p33, a44 = –p' '1'1, a45 = –p' '2'2, 

a46 = –p' '3'3, 

a51 = *mK
 (2i 1 + 1 + 11

2), a52 = *mK
(2i 2 + 2 + 22

2), 

a53 = *mK
(2i 3 + 3 + 33

2), 

a54 = *m'K
(2i '1 + '1 + '11'2), a55 = *m'K

(2i '2 + '2 + '22'2),                                                                  

a56 = *m'K
(2i '3 + '3 + '33'2), 

a61 = ( *

Kl ) (1
2 – 1) + 2 *mK

(1
2 –i1) – *bK

1,  

a62 = ( *

Kl ) (2
2 – 1) + 2 *mK

(2
2 –i2) – *bK

2, 

a63 = ( *

Kl ) (3
2 – 1) + 2 *mK

(3
2 – i3) – *bK

3,  

a64 = ( *'Kl ) (1'2–1) + 2 *m'K
(1'2–i'1)– *b'K

'1, 

a65 = ( *'Kl ) (2'2 – 1) + 2 *m'K
(2'2 – i'2) – *b'K

'2,  

a66 = ( *'Kl ) (3'2–1) + 2 *m'K (3'2 – i'3) – *b'K '3,                                                                                            

From eq.  (26), we obtain velocity of surface waves in common boundary between two viscoelastic, non-

homogeneous solid media under the influence of thermal field, where the viscosity is of general n
th
 order 

involving time rate of change of strain. 

PARTICULAR CASES 

Stoneley Waves: It is the generalized form of Rayleigh waves in which we assume that waves are 

propagated along the common boundary of the two semi-infinite media M1 and M2. Thus eq. (26) determine 

the wave velocity equation for Stoneley waves in the case of general thermo viscoelastic, non-homogeneous 

solid media of n
th 

order involving time rate of strain. Clearly, from eq. (26), the wave velocity equation for 

Stoneley waves depends upon the non-homogeneity of the material medium, temperature and viscous field 

follows. This equation, of course, is in well agreement with the corresponding classical result, when the 

effects of thermal, viscous field and non-homogeneity are absent. 

Rayleigh Waves: To investigate the possibility of Rayleigh waves in a thermo viscoelastic, non-

homogeneous elastic media, we replace media M2 by vacuum, in the proceeding problem; we also note the 

SH-waves do not occur in this case. 

Since the temperature difference across the boundary is always small so thermal condition given by 



Thermoelastic...                                                                                                              Rajneesh Kakar et al. 

507 J. Chem. Bio. Phy. Sci. Sec. B, 2012-2013, Vol.3, No.1, 498-509.  

 

 
 

T
hT

z




 = 0 at z = 0 respectively                                                                                                                             (27)                                                                                                                              

Thus eqs (25f) and (25h) reduces to, 

(2i 1 + 1 + 11
2) A1 + (2i 2 + 2 + 22

2) B1 + (2i 3 + 3 + 33
2) C1 = 0                                                (28a)  

[( *lK
) (1

2 – 1) + 2 *mK
(1

2 –i1) – *bK
1] A1+ [( *lK

) (2
2 – 1) + 2 *mK

(2
2 –i2) – *bK

2] B1  

+ [( *lK
) (3

2 – 1) + 2 *mK
(3

2 – i3) – *bK
3] C1 = 0                                                                                            (28b) 

From eq. (27), we have 

(1 – h) 1 A1 + (2 – h) 2 B1 + (3 – h) 3 C1 = 0                                                                                              (28c) 

Eliminating A1, B1 and C1 from eqs (28a), (28b) and (28c), we get 

det (b
ij
)=0, i, j= 1, 2, 3.                                                                                                                                                  (29) 

Where, 

b
11

 = (2i 1 + 1 + 11
2), b

12
 = (2i 2 + 2 + 22

2), b
13

 = (2i 3 + 3 + 33
2), 

b
21

= [( *lK
) (1

2 – 1) + 2 *mK
(1

2 –i1) – *bK
1], 

b
22

= [( *lK
) (2

2 – 1) + 2 *mK
(2

2 –i2) – *bK
2], 

b
23

= [( *lK
) (3

2 – 1) + 2 *mK
(3

2 – i3) – *bK
3],    

b31(1 –h) 1, b32=  (2 – h) 2, b33 = (3 – h) 3.                                                                                               

Thus eq. (29), gives the wave velocity equation for Rayleigh waves in a non-homogeneous, thermo 

viscoelastic solid media of n
th
 order involving time rate of strain. 

From eq. (29), it is follows that dispersion equation of Rayleigh waves depends upon the non-homogeneity, 

the viscous and thermal fields. 

This equation, of course, is in complete agreement with the corresponding classical result by Bullen
 [2]

, when 

the effects of thermal viscous field and non-homogeneity are absent. 

Love Waves: To investigate the possibility of love waves in a non-homogeneous, viscoelastic solid media, 

we replace medium M
2
 is obtained by two horizontal plane surfaces at a distance H-apart, while M

1
 remains 

infinite. 

For medium M
1
, the displacement component remains same as in general case given by eq. (17). 

For the medium M
2
, we preserve the full solution, since the displacement component along y-axis i.e. v no 

longer diminishes with increasing distance from the boundary surface of two media. 

Thus v' = 
   4 4' '

1 2

z i x ct z i x ct
C e C e

       
                                                                                                            (30) 

In this case, the boundary conditions are 

(i) vand 
32

 are continuous at z = 0 

(ii) '
32

 = 0 at z = –H. 
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Applying boundary conditions (i) and (ii) and using eqs (17) and (25), we get 

C= C
1
 + C

2
                                                                                                                                                                        (31) 

– *mK
λ4C= ('

K
)* [λ'4C

1
 – λ'4C

2
]                                                                                                                                    (32) 

4 4' '

1 2

H HC e C e   = 0                                                                                                                                              (33) 

On eliminating the constants C, C
1
 and C

2
 from eqs (26), (27) and (28), we get 

tanh (λ'4H)=-
 

*

4

4' ' *

K

K

 

 
.                                                                                                                                           (34) 

Thus eq. (34) gives the wave velocity equation for Love waves in a non-homogeneous, thermo viscoelastic 

solid medium of n
th

 order involving time rate of strain. Clearly it depends upon the non-homogeneity and 

viscous fields and independent of thermal field. 

CONCLUSIONS 

I. The present study reveals the effects of non-homogeneity, viscous and thermal fields in the wave 

velocity equations corresponding to Stoneley waves, Rayleigh waves and Love waves.  

II. Further it is investigated that viscoelastic surface waves are affected by the time rate of strain 

parameters. These parameters influence the wave velocity to an extent depending on the 

corresponding constants characterizing the thermo and viscoelasticity of the material. So the results 

of this analysis become useful in circumstances where these effects cannot be neglected. These 

velocities depend upon the wave number ‘’confirming that these waves are affected by non-

homogeneity of the material medium.  

III. Also it is noted from eq. (34) is that Love waves does not depends on temperature; these are only 

affected by viscous and non-homogeneity of the material medium. In absence of all fields and non-

homogeneity, the dispersion equation is in complete agreement with the corresponding classical 

result. 

IV. It is noted that for Rayleigh waves in a non-homogeneous, general thermo viscoelastic solid medium 

of higher order including time rate of change of strain we find that the wave velocity equation 

proves that there is dispersion of waves due to the presence of non-homogeneity, temperature field 

and viscosity. The results are in complete agreement with the corresponding classical results in the 

absence of all fields and compression. 

V. The wave velocity equation of Stoneley waves is very similar to the corresponding problem in the 

classical theory of elasticity. Here also there is dispersion of waves due to the presence of non-

homogeneity and temperature and viscoelastic nature of the solid. Also wave velocity equation of 

this generalized type of surface waves in non-homogeneous thermo viscoelastic solid media of 

higher order including time rate of strain is in complete agreement with the corresponding classical 

result in the absence of all fields and non-homogeneity. 

VI. The solution of wave velocity equation for Stoneley waves cannot be determined by easy analytical 

methods however, we can apply numerical techniques to solve this determinantal equation by 

choosing suitable values of physical constants for both media M
1
 and M

2
. 
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