Journal of Chemical, Biological and Physical Sciences An International Peer Review E-3 Journal of Sciences Available online at www.jcbsc.org Section E: Plant Biotechnology CODEN (USA): JCBPAT Research Abstract ## Cell Suspension Culture Of *Bursera linanoe* For Production of Linalool And Linalyl Acetate Leticia Pavón-Reyes¹, Silvia Evangelista-Lozano¹, Gabriela Sepúlveda-Jiménez¹, Víctor Chávez Ávila² and Mario Rodríguez-Monroy¹. ¹Centro de Desarrollo de Productos Bióticos. Instituto Politécnico Nacional (IPN). Yautepec, Morelos. México. C.P. 62731. ²Laboratorio de Cultivo de Tejidos Vegetales, Jardín Botánico del Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), C.P. 04510. Distrito Federal, México. **Abstract:** For the production of monoterpenes linalool and linalyl acetate from *Bursera linanoe* suspension culture, callus was obtained with the combination of *Naphthaleneacetic acid* (3.0 mg/L⁻¹) and 6-Benzylaminopurine (0.5 mg/L⁻¹), using axillary buds as explants. The kinetic growth of *B. linanoe* cell suspension culture growing in flasks showed an exponential increase up to 9 days of culture time reaching a maximum biomass of 11.16 gDWL⁻¹. During the 12 days of culture, cell viability was maintained between 60-70%. In contrast, when cells were grown in a bioreactor, showed an increase in biomass of 22.26 gDWL⁻¹ on day 7 and cell viability was maintained from 75 to 85%. Using gas chromatography/mass spectrometry, linalool and linalyl acetate were identified in suspension culture. **Keywords**: Bursera linanoe, Cell Suspension Culture, Linalool, Linalyl Acetate Corresponding author: Mario Rodríguez-Monroy * mrmonroy@ipn.mx