[DOI: 10.24214/jcbps.A.9.1.08894.]

Journal of Chemical, Biological and Physical Sciences

An International Peer Review E-3 Journal of Sciences

Available online atwww.jcbsc.org
Section A: Chemical Sciences

CODEN (USA): JCBPAT Research Article

Synthesis of novel 1,5 bis-propargyloxy-sulfides via β , β '-dihydroxythioethers derived from epoxides

Abir Maazaoui* and Moufida Romdhani-Younes

Laboratory of Structural Organic Chemistry, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia

Received: 11 November 2018; Revised: 30 November 2018; Accepted: 10 December 2018

Abstract: Various β , β '-dihydroxythioethers, derived from oxirane were readily converted to their corresponding 1,5 bis-propargyloxy-sulfides, by treatment with propagyl bromide and Sodium hydride in anhydrous THF. These new compounds were obtained in good yields. This method is applicable to aliphatic, cyclic and aryl diols. The use of NaH allows the transformation of primary and secondary alcohols.

Keywords: Epoxides, dihydroxythioethers, propargyl bromide, bis-propargyloxy-sulfides.

INTRODUCTION

Investigation of combined acetylene chemistry^{1,2} and sulfur chemistry³⁻⁶ provides a wide range of opportunities for development and applications of new intermediates for fine organic synthesis⁷, compounds with anticorrosive activity⁸ and biologically active compounds⁹⁻¹². Mono- and dialkynyl sulfides are successfully used as precursors for producing synthetic analogues of various natural compounds¹³, optically active natural compounds¹⁴ and for synthesis of various types of chiral sulfur derivatives¹⁵.

Propargyl ethers are also important starting materials for a wide range of organic reactions¹⁶. They are very useful for large synthetic applications. Synthetic methods of organic chemistry demonstrate alkyne groups to be most reactive ones which increase the importance of the compound¹⁷. Low cost, high yield of the compound has attracted the attention of scientists to synthesize the compound as monomer for many

polymeric compounds^{18, 19}. They are used as an intermediate for the synthesis of triazole by the click chemistry^{20,21}. Propargyl ether compounds are also used in synthesis of large number of functionalized dendrons^{22, 23}. The bis-propargyloxy ether derivatives constitute an interesting substrate for the yne-yne metathesis reactions^{24, 25}. These compounds have shown pharmacological and biological activities²⁶⁻²⁸. They also serve as key intermediates for the synthesis of many natural products including important antibiotics^{29, 30} and related polyaromatic compounds³¹.

In the course of our work on the synthesis of sulfur containing compounds, we have prepared a number of products owing either a thioether or an oxathioether moiety as an additional donor function and in the context of the study of reactivity of thioethers diols, we have previously reported the conversion of β , β -dihydroxythioethers into their homologous thioetherdithiols³². We herein report the synthesis of a new series of substituted bis-propargyloxy-sulfides through the propargylation of thioetherthiol with propargyl bromide in basic conditions.

MATERIAL AND METHODS

The products were characterized by 1 H and 13 C NMR spectroscopy and HRMS. The 1 H and 13 C NMR spectra were recorded in CDCl₃ as solvent on a Bruker AC 300 spectrometer. The chemical shifts were reported in δ -values relative to TMS (internal reference). For the 1 H NMR,the multiplicities of signals are indicated by the following abbreviations: s: singlet, d: doublet, t:triplet, m: multiplet. HRMS spectra were obtained using MAT 95 SBE instrument.

Synthesis of the bis-propargyloxysulfides: In a round bottom flask, equipped with a dropping funnel, and cooled at 0 °C, 6.61 mmol of β , β '-dihydroxy sulfides 1, dissolved in 15 mL of anhydrous THF, are introduced. Then 0.48 g (20 mmol, 3 equiv) of NaH is added. The reaction mixture was stirred for 15 min at 0 °C. Then 1.53 g (20 mmol, 3 equiv)) of propargyl bromide was added dropwise except for 2d where 40 mmol (6 equiv) were used. The mixture was stirred for 12 h at room temperature. At the end of the reaction, 3 mL of ethanol were added to the mixture to ensure the consumption of the NaH excess. The mixture was then diluted with 20 mL of water and extracted with dichloromethane 3 x 20 mL. The organic phase was dried over MgSO₄. After removing the solvents, the resulting crude was purified by silica gel column chromatography using petroleum ether/ether 90/10 as eluent. The pure compounds 3 were isolated as yellowish oils

5-Méthyl-4,10-dioxa-7-thiatrideca-1,12-diyne 3a: ¹H NMR (300 MHz, Chloroform-*d*): δ 4.33 – 4.11 (m, 4H,CC H_2 , CC H_2), 3.88 -3.76 (m, 1H, CHO); 3.72 (t, 2H J = 6.6 Hz, SC H_2 C H_2 O); 2.88 -2.70 (m, 2H, SC H_2 CH $_2$); 2.67 - 2.55 (m, 2H, CHC H_2 S); 2.47 (dt, 2H J = 14.5, 7.1 Hz, CCH, CCH); 1.26 (d, 3H, J = 6 Hz, CH3). ¹³C NMR (75 MHz, Chloroform-*d*): δ 80.04(CCH); 79.53 (CCH); 74.75(CHO); 74.49(CCH); 74.25(CCH); 69.54(SC H_2 CH $_2$); 58.07 (CH $_2$ OCH $_2$); 55.96(CHOCH $_2$); 38.30(CHCH $_2$ S); 32.12 (SCH $_2$ CH $_2$); 19.00(CH $_3$); HRMS: calculated 235.0769 for (C $_{11}$ H $_{16}$ NaO $_{2}$ S), found 235.0763 (M + Na) +.

5-Ethyl-4,10-dioxa-7-thiatrideca-1,12-diyne 3b: ¹H NMR (300 MHz, Chloroform-*d*): δ 4.33 – 4.02 (m, 4H, CC H_2 , CC H_2), 3.77 – 3.52 (m, 2H, SC H_2 C H_2 O), 3.50 – 3.45 (m, 1H, CHO), 2.76 – 2.62 (m, 2H, SC H_2 CH₂), 2.52 – 2.41 (m, 2H, CHC H_2 S), 2.37 (t, J = 3.0 Hz, 2H, CCH, CCH), 1.59 – 1.31 (m, 2H, C H_2 CH₃), 0.93 (t, J = 5.8 Hz, 3H, C H_3 CH₂). ¹³C NMR (75 MHz, Chloroform-*d*): δ 78.92 (*C*CH); 78.91 (*C*CH); 75.78(*C*HO); 75.76 (*C*CH); 75.25(*C*CH); 69.75(SCH₂CH₂); 57.77 (CH₂OCH₂); 56.96

 $(CHOCH_2)$; 36.30 $(CHCH_2S)$; 33.32 (SCH_2CH_2) ; 28.73 (CH_2CH_3) ; 9.80 $(CH_3 CH_2)$; HRMS: calculated 249.0925 for $(C_{12}H_{18}NaO_2S)$, found 249.0928 (M + Na) +.

5-Phenoxy-4,10-dioxa-7-thiatrideca-1,12-diyne 3c: ¹H NMR (300 MHz, Chloroform-*d*): δ 7.32 – 6.95 (m, 5H, H_{Ar}), 4.35 – 4.28 (m, 2H, C*H*₂OPh), 4.11 – 4.00 (m, 4H, CC*H*₂, CC*H*₂), 3.82 – 3.74 (m, 2H, SCH₂CH₂O), 3.57-3.53 (m,1H, C*H*O), 2.77 – 2.63 (m, 2H, SCH₂CH₂O), 2.53 – 2.40 (m, 2H, CHC*H*₂S), 2.37 (t, J = 3.0 Hz, 2H, CC*H*, CC*H*). ¹³C NMR (75 MHz, Chloroform-*d*): δ 158.77, 129.46, 120.61, 115.18 (C_{ar}), 78.95 (CCH), 78.92 (CCH), 75.76 (CHO), 75.53 (CCH), 75.28 (CCH), 69.76 (SCH₂CH₂), 68.74 (CH₂OPh), 57.76 (CH₂OCH₂), 56.99 (CHO*C*H₂), 34.95 (CH*C*H₂S), 33.39(S*C*H₂CH₂). HRMS: calculated 327.1031 for (C₁₇H₂₀NaO₂S), found 327.1035 (M + Na) +.

1.5-Phenyl-4,10-dioxa-7-thiatrideca-1,12-diyne 3d₁:¹H NMR (300 MHz, Chloroform-*d*): δ 7.45 – 7.31 (m, 5H, H_{ar}), 4.85 (m, 1H, C*H*O), 4.33-4.07 (m, 2H, CC*H*₂), 4.04 – 3.78 (m, 2H, CC*H*₂), 3.77 – 3.50 (m, 2H, SCH₂C*H*₂O), 3.05 – 2.75 (m, 2H, CHC*H*₂S), 2.72 – 2.45 (m, 2H, SC*H*₂CH₂O), 2.37 (t, *J* = 3.0 Hz, 2H, CC*H*, CC*H*). ¹³C NMR (75 MHz, Chloroform-*d*): δ 141.69, 128.45, 128.11, 127.21 (C_{ar}), 79.46 (*C*HO), 78.95 (*C*CH), 78.92 (*C*CH), 75.76 (C*C*H), 75.28 (C*C*H), 69.76 (SCH₂C*H*₂), 57.76 (CH₂OCH₂), 55.50 (CHOCH₂), 38.36 (CH*C*H₂S), 33.39 (S*C*H₂CH₂).

2.6-Phenyl-4,10-dioxa-7-thiatrideca-1,12-diyne 3d₂: ¹H NMR (300 MHz, Chloroform-*d*): δ 7.36 (s, 5H, H_{ar}), 4.34 – 4.13 (m, 2H, CC H_2), 4.08 (m,2H, C H_2 CHPh), 4.02 (t, J = 6.7 Hz, 1H, CH₂CHPh), 3.92 – 3.89 (m, 2H, CC H_2), 3.88 – 3.82 (m, 2H, SCH₂CH₂), 2.76-270 (m, 2H, SC H_2 CH₂), 2.37 (t, J = 3.0 Hz, 2H, CCH, CCH). ¹³C NMR (75 MHz, Chloroform-*d*): δ 139.30, 128.72, 127.90, 127.76 (C_{ar}), 79.06 (CCH), 78.95 (CCH), 75.42 (CH₂CHPh), 75.38 (CCH), 75.28 (CCH), 70.08 (SCH₂CH₂), 57.94 (CCH₂), 57.76 (CCH₂), 49.46 (CHPh), 32.56 (SCH₂). HRMS: calculated 297.0925 for (C₁₆H₁₈NaO₂S), found 297.0921 (M + Na) +.

(2-(Propargyloxy)cyclohexyl)(2-(propargyloxy)ethyl)sulfane 3f: 1 H NMR (300 MHz, chloroform-d): δ 4.34 - 4.07 (m, 2H, CC H_2), 4.05 - 3.84 (m, 2H, CC H_2), 3.80 - 3.58 (m, 2H, SCH $_2$ C H_2), 3.55 - 3.48 (m, 1H, CHO), 2.76 - 2.67 (m, 2H, SCH $_2$), 2.49 (m, 1H, CHS), 2.37 (t, J = 3.0 Hz, 2H, CCHCCH), 1.95 - 1.14 (m, 8H, C H_2 Ccyclohexyl). 13 C NMR (75 MHz, Chloroform-d): δ 80.63 (HCHO), 78.95 (HCCH), 78.92 (HCCH), 75.76 (HCCH), 75.28 (HCCH), 70.08 (HCCH $_2$ CH2), 57.76 (HCCH2), 56.82 (HCCH2), 49.86 (HCH3), 32.77 (HCCH2), 32.63, 26.87, 24.70, 24.60 (HCCH2)cyclohexyl). HRMS: calculated 275.1082 for (HC14H20NaO2S), found 275.1086 (HHA20NaO2S), found 275.1086 (HHA20NaO2S),

RESULTS AND DISCUSSION

To access to the bis-propargyloxy-sulfides 3 we used thioetherdiols 2 as intermediates. These compounds were prepared from the reaction of mercaptoethanol with epoxides in basic conditions using the method described previously³³ (Scheme 1).

According to the literature Williamson reaction is the best-known and most widely used method for the preparation of propargyl ethers³⁴. The procedure involves treatment of a propargyl halide with alkoxide prepared from an alcohol under basic conditions. Initially a systematic study was carried out for evaluation of the propargylation reaction of compounds 2 with propargyl bromide under various conditions. When thioether diols 2 were treated with potassium carbonate as a base, no propargylation reaction was observed. Next, when 2 was treated with sodium hydroxide, a mixture of products was found, poor yields were obtained and the reaction was not complete. Consequently, the use of sodium hydride gave a complete

propargylation of the two hydroxyl groups. Therefore, the new substituted 1,5 bis-propargyloxy-sulfide 3 have been prepared in this way (Scheme 1).

R= Me; Et; CH₂OPh; Ph; -(CH₂)₄-

Scheme 1

As shown in **Tables 1**, the bis propargyloxy-sulfides were obtained in good yields. The use of a sodium hydride (NaH) in anhydrous THF, at room temperature affords exclusively, within 12h, the bis propargyloxysulfides **3.**

The NaH acts as a strong base that is capable to deprotonate both primary and secondary alcohols, affording therefore the bis propargylation products 3 according to a substitution reaction S_N2 .

Tables 1: synthesis of bis-propargyloxy-sulfides **3a-e**

Epoxide	Thioetherdiols ^a	Bis Propargyloxy-thioether ^a	yields % b
o 1a	H ₃ C S OH OH	CH ₃ S O	75
1b	H ₃ C OH OH	3b	70
Ph O O	Ph O S OH OH	Ph O S	80
	Ph S OH 60%	3c Ph S 61%	
Ph O	2d ₁	3d ₁	79 ^b

^aThe ratios of isomers were determined by ¹H NMR.

^bTotal yield of two isomers

The formation of compounds **3a-e** was confirmed with ^{1}H and ^{13}C NMR spectroscopy and HRMS. In all cases, ^{1}H NMR spectra show the absence of a singlet around δ 3.77 ppm due to the tow (OH) protons in the starting diols and presence of a multiplet between 4.33 - 4.11 ppm for the 2 CH₂ protons of propargyl and a multiplet between 2.51 - 2.46 ppm for the 2 CH protons of propargyl. The ^{13}C NMR spectra show the absence of signal of CHOH and CH₂OH at 66 and 61 ppm respectively and the presence of new six signals, which correspond to the two propargyl groups.

In the case of styrene oxide, we showed in a previous letter³³ that the ring opening of this epoxide with mercaptoethanol using benzyltrimethylammonium hydroxide (Triton B) as catalyst led to a mixture of two regioisomers of β , β '-dihydroxysulfide $2d_1$ and $2d_2$ (Scheme 2). The two isomers were converted into their homologous bis-propargyls $3d_1$ and $3d_2$. The mixture of isomers was purified using column chromatography. The ratio of the two isomers was determined by ¹H NMR spectroscopy.

Scheme 2

Under similar conditions, treatment of trans- β , β '-dihydroxy sulfide **2e** with propargyl bromide gave of the corresponding expected trans-bispropargyloxy sulfide **3e** in good yield (Scheme 3).

Scheme 3

CONCLUSION

A good yielding conversation of substituted thioetherdiols **2a-e** into their corresponding substituted bis propargyloxy sulfides **3a-e** was carried out. To our knowledge, these products have not been reported previously and may be useful intermediates for the synthesis of various chemically and pharmaceutically interesting compounds.

ACKNOWLEDGEMENT

The authors would like to thank the Tunisian Ministry of Higher Education and Scientific Research for the financial support (LR99ES14) and Dr M A Sanhoury, MRSC from the Department of Chemistry, Faculty of Sciences of Tunis, for language correction.

REFERENCES

- 1. Y. Pan, T. L. Lowary and R. R. Tykwinski, Canadian Journal of Chemistry, 2009, 87, 1565-1582.
- 2. S. A. Vizer, K. B. Yerzhanov, A. A. A. Al Quntar and V. M. Dembitsky, Tetrahedron, 2004, 60, 5499-5538.
- 3. I. Koval', Russ. J. Org. Chem., 2007, 43, 319-346.
- 4. E. Schaumann, in Sulfur-Mediated Rearrangements I, Springer, 2007, pp. 1-34.
- 5. M. Bouchouit, M. E. Said, M. K. Ali, S. Bouacida, H. Merazig, N. K. Chaouche, A. Chibani, B. Zouchoune, A. Belfaitah and A. Bouraiou, Polyhedron, 2016, 119, 248-259.
- 6. T. Kondo and T.-a. Mitsudo, Chemical reviews, 2000, 100, 3205-3220.
- 7. M. B. Nielsen, Letters in Organic Chemistry, 2006, 3, 3-9.
- 8. N. Petkova, Oxidation communications, 2002, 25, 524-528.
- 9. A. Siddiq and V. Dembitsky, Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2008, 8, 132-170.
- 10. U. Münchberg, A. Anwar, S. Mecklenburg and C. Jacob, Organic & biomolecular chemistry, 2007, 5, 1505-1518.
- 11. M. J. Stanger, L. A. Thompson, A. J. Young and H. R. Lieberman, Nutrition reviews, 2012, 70, 107-117.
- 12. A. Kranjc and D. Kikelj, Current medicinal chemistry, 2004, 11, 2535-2547.

- 13. M. Isobe, S. Niyomchon, C.-Y. Cheng and A. Hasakunpaisarn, Tetrahedron letters, 2011, 52, 1847-1850.
- 14. O. Lozinskii, T. Shokol and V. Khilya, Chemistry of Heterocyclic Compounds, 2011, 47, 1055-1077.
- 15. S. Motohashi, K. Nagase, T. Nakakita, T. Matsuo, Y. Yoshida, T. Kawakubo, M. Miura, M. Toriyama and M. V. Barybin, The Journal of organic chemistry, 2011, 76, 3922-3936.
- 16. D. D. Díaz and V. S. Martín, Tetrahedron Letters, 2000, 41, 9993-9996.
- 17. P. Antoni, D. Nyström, C. J. Hawker, A. Hult and M. Malkoch, Chemical communications, 2007, 2249-2251.
- 18. Y. Chen, L. Chen, W. Zhou, D. Zha, D. Zhou, F. Bai and M. Wan, Synth. Met., 2009, 159, 1649-1656.
- 19. C. Ge, W. Liu, Y. Ling and H. Tang, J. Polym. Sci., Part A: Polym. Chem., 2018, 56, 163-173.
- 20. P. Rajakumar and R. Anandhan, European journal of medicinal chemistry, 2011, 46, 4687-4695.
- 21. C. Schüll, T. Gieshoff and H. Frey, Polymer Chemistry, 2013, 4, 4730-4736.
- 22. J. W. Lee, J. H. Kim, B.-K. Kim, W. S. Shin and S.-H. Jin, Tetrahedron, 2006, 62, 894-900.
- 23. J.-W. Lee, B.-K. Kim, S.-C. Han and J.-H. Kim, Bull. Korean Chem. Soc., 2009, 30, 157-162.
- 24. D. Banti and M. North, Tetrahedron letters, 2002, 43, 1561-1564.
- 25. E. Groaz, D. Banti and M. North, Advanced Synthesis & Catalysis, 2007, 349, 142-146.
- 26. A. P. Esteves, D. M. Goken, L. J. Klein, M. J. Medeiros and D. G. Peters, J. Electroanal. Chem., 2003, 560, 161-168.
- 27. A. Panja, E. Das, M. Maji and A. Basak, Tetrahedron Letters, 2015, 56, 5986-5990.
- 28. C. Sridar, U. M. Kent, K. Noon, A. Mc Call, B. Alworth, M. Foroozesh and P. F. Hollenberg, Drug Metabolism and Disposition, 2008.
- 29. Z. Fei and F. E. McDonald, Organic letters, 2007, 9, 3547-3550.
- 30. T. Kawasaki, S. Saito and Y. Yamamoto, The Journal of organic chemistry, 2002, 67, 2653-2658.
- 31. X. Yang, T. Rotter, C. Piazza and P. Knochel, Organic letters, 2003, 5, 1229-1231.
- 32. I. G. Dallali, H. M. Sbihi, M. M. Chaabouni and M. Romdhani-Younes, Journal of the Tunisian Chemical Society, 2017, 19, 8-12.
- 33. M. Romdhani-Younes and M. M. Chaabouni, Journal of Sulfur Chemistry, 2012, 33, 223-228.
 - 34. A. Saha, J. Leazer and R. S. Varma, Green Chemistry, 2012, 14, 67-71.

Corresponding author: Abir Maazaoui

Laboratory of Structural Organic Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia

Online publication Date: 10.12.2018